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1. Introduction: health and paleogenomics

Health can be defined as physical, social and mental well being (WHO
2005). Two of these three categories can not be easily assessed
through the archaeological and genetic study of ancient remains. The
physical condition, in contrast, can be partially inferred from the study of
archaeological human remains. In consequence, the study of health in an-
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The assessment of the health condition of past individuals is a central topic in the study
of ancient populations: both from an archaeological and genetic point of view. The genetic
study of ancient human individuals and human-related environments has already been suc-
cessfully used to understand the relationship of ancient populations with health and dis-
ease. The present article aims to present which are the current explored applications of
archeogenetics in this direction. The article is divided in three sections that group the
major research lines: the direct study of pathogenic data from ancient human remains,
the study of human evolution linked to disease and the study of human related environ-
ments. Additionally, the article aims to discuss the potential scope and limitations of this
method. 
Keywords: ancient DNA, pandemics, plague, malaria, metagenomics, health condition

La valutazione dello stato di salute degli individui del passato è un argomento centrale per
lo studio delle popolazioni antiche, sia dal punto di vista archeologico che genetico. Lo studio
genetico degli individui antichi e degli ambienti a loro legati è stato già applicato per com-
prendere la relazione tra le popolazioni antiche e la salute. Il presente articolo vuole pre-
sentare le attuali applicazioni dell’archeogenetica per tali fini. L’articolo è diviso in tre sezioni
che raggruppano le principali linee di ricerca: lo studio diretto di dati patogeni dai resti umani
antichi, lo studio dell’evoluzione umana collegata alle malattie e lo studio degli ambienti re-
lativi all’uomo. Inoltre, l’articolo vuole discutere potenzialità e limiti di questo metodo.
Parole chiave: DNA antico, pandemie, peste, malaria, metagenomica, stato di salute
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cient populations based on biological material has been always focused
on the study of the physical condition of the individual. 

The health status of the individual is a complex reality, therefore is
relevant to understand that the study of specific signals and markers
provide very relevant information about specific stress conditions but
may not be enough for assessing the global health condition of the indi-
vidual (see Reitsema et al. 2014). When extrapolating health status ob-
servations from a sample study to a population level, more precautions
must be taken into account. In Wood et al. 1992 the cautions that sci-
ences based on the study of skeletal assemblages must control are di-
vided in two categories: factors that can be addressed by a more accu-
rate methodology like: problems with the sex and age estimation of skele-
tons, inadequate sample size and non representative sample, differential
bone preservation conditions and differential diagnosis of the disease
causing the lesion. The second category groups the relevant limitations
that can only be addressed by changing the research strategy. In this
category we include all the bias sources that relate to the non-correctly
addressed heterogeneity of the population. 

The study of ancient Desoxyribonucleic Acid (aDNA) of ancient biolog-
ical remains is a relatively new approach in comparison to the large tra-
jectory of bioarcheological research. In 1985, short sequences of DNA
from Egyptian mummies were cloned with bacteria (Pääbo et al. 1985).
Shortly after, the first DNA sequences extracted from skeletal tissue
were sequenced and published (Hagelberg et al. 1989). Since then, mul-
tiple publications have reported the analysis of DNA from a constantly
growing number of individuals from multiple historic periods. The field has
evolved rapidly and currently millions of gigabases (GB) of ancient genom-
ic data are publicly available (see Skoglund et al. 2018). These studies
have allowed: the direct reconstruction of the genetic and social struc-
tures of ancient societies (e.g: Amorim et al. 2018; Mittnik et al. 2019;
Schroeder et al. 2019), the unraveling of the migrating routes of extinct
populations (e.g.: Haak et al. 2015; Lazaridis et al. 2016; Hofmanová et
al. 2016; Mathiesson et al. 2018; Moreno-Mayar et al. 2018; Olalde et
al. 2019; Narasimhan et al. 2019), the evolution of the Homo genus
while enabling genetic comparison of our genome with extinct taxa such
as Neanderthals or Denisova (e.g.: Meyer et al. 2012; Prüfer et al.
2014; Slon et al. 2018) and the study of past pandemics (e.g.: Bos et
al. 2011; Schuenemann et al. 2013; Bos et al. 2014). The field of pale-
ogenomics is gradually shifting to more complex questions that rely on
the capacity of integrating diverse orientations. The novel trends aim to
combine archaeological, anthropological, genomic and climatic data to un-
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ravel past environments or the dynamics of ancient human populations in
context with the environment and culture.

In the particular case of classical and post-classical times (8th centu-
ry BC to 7th century AD), only few publications have included the analy-
sis of individuals from these historical periods, the most relevant ones
are: a time-scale genetic study of more than 100 individuals from the
city of Rome, covering all the classical times, which revealed that the ge-
netic diversity during Imperial Rome was way higher than the present-
day Rome population (Antonio et al. 2019). This finding suggests that
the city of Rome was more cosmopolitan in Imperial times than nowa-
days. Also relevant is a whole cemetery study of two Longobard sites
from the 6th century CE in Northern Italy and Hungary. The genetic and
archaeological analyses of the site graves unraveled complex social
structures in these communities. These findings were achieved through
the combined study of isotopes, grave goods and DNA (Amorim et al.
2018). One of the most relevant findings from the cited publication was
the discovery, in the Longobard cemetery of Collegno (Italy), of individu-
als with low class profiles, according to grave gods with Italian genetic
ancestry while the upper class graves belonged to Longobard genetic-an-
cestry individuals, which suggests a leading-class replacement in North-
ern-Italy in this period. Classical samples are also found in studies includ-
ing: classical and post-classical Iberia (Olalde et al. 2019), Roman
Lebanon (Haber et al. 2019), Roman Britain (Schiffels et al. 2016) or
Egyptian mummies from the Ptolemaic Kingdom (Schuemman et al.
2017). All these publications have been able to characterize the individ-
uals from these periods, giving information about the migrating move-
ments and population changes of the last millenium. 

Ancient DNA analysis, together with isotopic analyses and radiocar-
bon dating involve invasive and destructive sampling. This can make the
study of ancient DNA polemic and ethically inadequate, as it can be in-
compatible with the bioarchaeological study of ancient remains. Although
several bones have been used for aDNA sampling, the petrous bone, and
especially the inner ear, clearly shows the highest content of DNA in the
whole skeleton (Pinhasi et al. 2015). Therefore, the petrous bone has
become the primary target of all the paleogenomic studies, as it guaran-
tees the maximum amount of endogenous DNA in the whole skeleton,
which is crucial in aDNA research. However, the removal of the com-
plete petrous bone for sampling has an important impact on the capacity
to demarcate landmarks used in craniometric diversity comparison,
which represents a relevant problem. In order to solve this issue, re-
search on less invasive sampling techniques is one of the priorities of the
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field. One of the most relevant novel techniques in this direction is the
Cranial Base Drilling Method (CBDM). This method allows the sampling
of the petrous portion of complete skulls without altering the morphology
of it, just performing a little incision on the cranial base, from where the
inner ear is targeted (Sirak et al. 2017). Other alternatives to the sam-
pling of the petrous bones are: the sampling of the tooth cementum
(Hansen et al. 2017) or the destruction of the ear ossicles, that yield to
significant endogenous DNA recovery and do not jeopardize future cran-
iometric studies (Sirak et al. 2020). These findings show the interest on
finding minimally invasive sampling techniques more compatible with the
bioarchaeological research.

2. Archaeogenetics and disease

Ancient DNA can be obtained from a wide range of samples; from en-
vironmental material (Willerslev et al. 2003) to human manufactured ob-
jects (Schablitsky et al. 2019), and its study has multiple applications.
When referring to the assessment of health from archeological samples
these applications can be grouped in three different categories: a) Anal-
ysis of the human genetic variation linked with susceptibility, predisposi-
tion and resistance to disease, b) The direct identification and study of
ancient pathogens in ancient biological remains and c) The study of the
human-related environment and how it influences the health status of
the individual. 

2.1. Human genetic adaptation to disease

Modern humans evolved in Africa and left the continent at least
200,000 years BP (Hershkovitz et al. 2018). During the last millennia
humans have spread and colonized all the continents and ecosystems. It
is widely accepted that the present day human genetic diversity is the
result of local adaptations of the different human populations that set-
tled diverse ecosystems (Balaresque et al. 2007). Infectious diseases
have been accompanying humans since the arose of our species, it is es-
timated that these pathologies have been the principal cause of death
among all human history (Dye 2014), representing the most significant
selective pressure that have acted upon our genomic variation (Fumigalli
et al. 2017).

Farming originated in the Middle-East 11,000 years ago and started
expanding through Europe 8,5000 years ago (Skoglund et al. 2012). The
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technological revolution led to massive migrating movements that re-
placed most of the European populations by farmers with Anatolian an-
cestry (Hofmanová et al. 2016; Lazaridis et al. 2016), which expanded
into all the continent during the next 5,000 years (Skoglund et al. 2012).
The arise of farming was contemporary in place and in time with multiple
domestication processes of animals (Zeder 2008). The Neolithic onset
was succeeded by the arose of sedentary and highly inhabited human
communities. The increase in population densities in these sedentary
sites linked with the close contact of humans with livestock conduit to the
spread of zoonotic diseases (Pearce-Duvet 2006). Zoonotic diseases are
infectious diseases that have an animal reservoir, which represent most
of the documented infectious agents acting upon human cells (Woolhouse
et al. 2005). As different climatic conditions favour the propagation of
different pathogens it is observed that different human populations exhib-
it particular adaptations to several infectious diseases as a result of a
long coexistence. These adaptations are observed as prevalent geno-
types in specific populations. Normally, the favored genotypes are found
in genes that codify for proteins that interact with an specific pathogen.
The most well known examples of such adaptation are probably sickle cell
anemia (Gouagna et al. 2010), Beta thalassemia (Waterhall et al. 1997)
and Duffy negative phenotype (Miller 1976) (fig 1). All of these three ge-
netic variants confer a major resistant phenotype against malaria. High
frequencies of these variants are observed in present-day African popu-
lations exposed for many centuries to the disease.

The study of ancient genomes allows a further step in the understand-
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ing of human genetic adaptations, allowing a direct observation and
tracking of genetic variation origin and spread in past human populations
(Malaspinas et al. 2012; Gamba et al. 2014; Marinack et al. 2017;
Nielsen et al. 2017; Mathiesson et al. 2015). Particular applications of
this direction have revealed that notorious infectious diseases such as
malaria have not represented an important selective pressure in ancient
European populations (Gelabert et al. 2017). Similar approaches have
also allowed the identification of genetic variants that have fluctuated in
different periods revealing the presence of human adaptation to diet
such as the capacity of tolerating the lactose or the efficiency in the
metabolism of fatty acids (Mathiesson et al. 2015; Ye et al. 2017;
Buckley et al. 2017; Sverrisdóttir et al. 2017), adaptations in the im-
mune system (e.g.: Olalde 2014; Hofmanová 2016; Lindo et al. 2016;
Broushaki et al. 2016) as well as adaptations to specific climatic condi-
tions (Günther et al. 2018). 

2.2. Past pandemics: direct study through archaeogenetics

The study of past pandemics has gained certain popularity in recent
decades, and especially the direct study of pathogens recovered from bi-
ological and archeological remains, usually extracted from human bone or
teeth. The main limiting factor in the study of past pathogens is the
preservation of these in the skeletal tissue as not all pathogens can be
recovered from bones. Some pathogens have very low infectious loads
and some are too acute to be preserved in bone. Examples of these
pathologies without skeletal affectation or low pathogenic load are:
cholera or viral infections such as flu.

Multiple pandemics have affected human populations during history
(fig. 2), however its impact and etiological causing agent can not be al-
ways known from the macroscopic study of ancient human remains or
historical texts. The research on past infectious diseases and pan-
demics, before the arose of aDNA, has been conducted through the pa-
leopathological study of ancient skeletal assemblages combining macro-
scopic, histological and radiological diagnosis of skeletal lesions that can
be linked to disease (Buikstra, Roberts 2012). Since the early 1990s,
the usage of molecular techniques has enabled the direct sequencing of
pathogenic species in ancient skeletal assemblages (Spigelman et al.
1993; Salo et al. 1994; Arriaza et al. 1995; Drancourt et al. 1998).
These first results were obtained with the usage of Polymerases Chain
Reaction (PCR) techniques. PCR techniques imply the recovery of only
known and short fragments of DNA. The limited output has two main
consequences: A) the recovered sequences can be enough for diagnosis
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but not for molecular phylogenetic studies, B) PCR results are difficult
to be reproduced, which means the existence of false positive identifica-
tions (Gilbert et al. 2004; Shapiro et al. 2006). Since the arose of Next
Generation Sequencing (NGS) techniques, the amount of genetic data
sequenced has experimented a big boost, allowing the sequencing of
complete pathogenic genomes (Bos et al. 2011) and the study of the
molecular particularities of the ancient DNA which allow the identifica-
tion and discrimination of modern contamination (Sawyer et al. 2012).
The implementation of sensible bioinformatic pipelines (Key et al. 2017)
have resulted in a drastic reduction of the false positives of pathogenic
analyses with NGS data. 

Pathogenic DNA can be targeted and extracted from diverse
sources. To maximize the chances of recovering the pathogen it is nec-
essary to target the specific tissues that can more probably preserve it.
While petrous bone is normally the choice for endogenous ancient DNA,
its low irrigation make it less indicated when looking for pathogens, as it
was demonstrated with Bronze Age plague victims (Margaryan et al.
2018). Y. pestis can be targeted in the inner cavity of the teeth as it is
preserved in the pulp chamber (Drancourt et al. 1998; Schuenemann et
al. 2011). Other pathogenic species recovered from teeth are: Plasmod-
ium falciparum (Marinack et al. 2016), Hepatitis B virus (Mühelmann et
al. 2018; Krause-Kyora et al. 2018), Mycobacterium leprae (Schuene-
mann et al. 2013; Schuenemann et al. 2018), Salmonella enterica (Vå-
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gene et al. 2018; Key et al. 2020), and Borrelia recurrentis (Guelli et
al. 2018). Mycobacterium tuberculosis (Bos et al. 2014), Treponema
pallidum (Schuenemann et al. 2018) and Mycobacterium leprae (Schuen-
emann et al. 2013; Schuenemann et al. 2018) have been isolated from
bone. Other pathogens have been recovered from less conventional
sources such ass: Plasmodium falciparum and vivax from antique micro-
scope slide collections (Gelabert et al. 2016; de-Dios et al. 2019; van-
Dorp et al. 2019), Vibrio cholera from medical collections (Devault et al.
2014) and others. 

In the following section two relevant diseases will be presented:
malaria and the plague. Both diseases have had relevant implications in
human history and these diseases are the two more relevant that have
been recovered and studied from classical individuals. 

2.2.1. Malaria

Malaria is an infectious disease caused by the infection of diverse pro-
tist species of the Plasmodium genus (fig 3). To date there are six de-
scribed species capable of infecting human cells. P. falciparum is known
to be the most lethal one, while P. vivax is the one with the broader dis-
tribution. Currently malaria is widely prevalent in Africa. It is estimated
that up to 455,000 people died from paludism in 2016 (World malaria
report 2017, WHO). Recent discoveries have pointed out that the rela-
tionship between P. falciparum
and humans occurred recently,
and probably linked with the
farming expansion. Farming led
to a dramatic boost of both
human populations and densi-
ties. The disparity between
human and great apes popula-
tion size turned into a selective
pressure for Anopheles to feed
on humans (Carter et al.
2003), which motivated the se-
lection of human feeding geno-
types. Therefore, P. falciparum
would have also been forced to
select those genotypes that
conferred a major success both
for human and mosquito infec-
tion. This process promoted an
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important population growth of P. falciparum that genetically appears as
a bottleneck dated in 5,000 years BP (Otto et al. 2018).

P. falciparum would have spread from Africa to all tropical and sub-
tropical climates within the last 6,000 years (Carter et al. 2003; Otto
et al. 2018). The expansion towards Europe seems to be much more re-
cent, probably occurred in historical times. The spread of P. vivax is sug-
gested to be quite comparable, P. vivax has also an African origin and
after a complex path would have colonized Europe in recent times. The
proposed estimations are around 10,000 years BP (Culleton et al.
2011). These estimations also link the arrival of P. vivax in Europe with
the onset of farming (Liu et al. 2014). Nevertheless there are other pro-
posed dates that set this up to 265,000 years BP (Escalante et al.
2005; Mu et al. 2005).

Malaria was present in Europe in classical times (Sallares et al.
2004). Genetic studies based on ancient samples have revealed that P.
falciparum malaria was probably introduced in Europe from India. This in-
troduction could have been following the military campaigns of Alexander
the Great in India in the 4th century BCE (Gelabert et al. 2016; de-Dios
et al. 2019), while P. vivax European malaria is likely to have an African
origin (Gelabert et al. 2016; van-Dorp et al. 2019). 

Related to the evidence of malaria in the Mediterranean in classical
times, Hippocrates of Cos the Greek medical doctor of the Pericles era,
considered as one of the fathers of medical science, described episodes
of fevers in Classical Greece concor-
dant with malaria symptoms. This writ-
ing would represent the oldest written
record of malaria infection. This record,
however, does not allow us to know the
extent of malaria presence at this time
in the region, even though it is possible
that was vastly ubiquitous (Sallares
2002). Before the arose of NGS, only
one PCR result from a 5th century CE
Italian child from Lugano in Umbria was
available (Sallares et al. 2001). Recent
intents have certified the presence of P.
falciparum in two individuals from Velia
and Vagnari, two Italian coastal popula-
tions from the 1st-2nd century CE by
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the sequencing of the P. falciparum mitochondrial genome (Marciniak et
al. 2016) (fig. 4). 

2.2.2. The Plague

Y. Pestis infection is the cause of bubonic plague. This bacteria orig-
inated and evolved from Y. pseudotuberculosis, much less pathogenic
than Y. pestis (Achtman et al. 1999). Nowadays it is still present in ro-
dent reservoirs and it is endemic in 17 countries (WHO 2017). Three
main Y. pestis epidemics have affected Europe in historical times. The
oldest documented one is the Plague of Justinian, that lasted from the
6th to the 8th century AD (Russell et al. 1968). Probably the most fa-
mous one is the pandemic that devastated Europe in the 14th century.
Named the Black Death, this epidemic could have killed up to 40% of the
European population and was present in Europe until the 18th century
(Zietz et al. 2004; Benedictow et al. 2004). The most recent plague
pandemic occurred between the 18th and 19th centuries (Cohn et al.
2008; Stenseth et al. 2008). Based on literary records, possibly earlier
Y. pestis outbreaks occurred in Europe prior to the Justinian plague,
such as the Plague of Athens (5th century BC) and Antonine plague (2nd

century AD). The lack of concluding DNA evidence do not allows neither
the confirmation of such events nor the identification of the pathogen
linked with the historical records (Drancourt et al. 2002). The study of
plague, in general, is complicated by the presence of false positives, as
other bacterial species such as such as Y. pseudotuberculosis, found on
the soil can be confused with Y. pestis (Gilbert et al. 2004), and is es-
pecially challenging when working with low coverage samples (Ras-
mussen et al. 2015; Andrades et al. 2017; Keller et al. 2019). 

The Justinian plague (541 CE) is the name that received the first doc-
umented Y. pestis outbreak that originated in Northern Africa, according
to written records, in the mid-6th century CE (Harper 2017; Sarris
2013) and was present in Europe until the 8th century CE. Molecular
data, nevertheless, do not support this hypothesis. To date, the aDNA
of Y. pestis has been found in samples from human remains dated to this
pandemic from Germany (Feldman et al. 2016; Wagner et al. 2014;
Keller et al. 2019), Britain, Spain and France (Keller et al. 2019). The
comparison of these samples with first pandemic ones from China and
Kyrgyzstan (Cui 2013; Eroshenko 2017) as well as a 2nd-3rd century CE
sample from Tien Shan mountains (De Barros Damgaard 2018) has re-
vealed that the First plague Pandemic likely has an Asian origin. This
plague could have accessed the Mediterranean via the Indian Ocean and
the Red Sea since India was well connected by marine traffic with the
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early Byzantine Empire (Harper 2017). The comparison of the European
strains has pointed the presence of local reservoirs at that time, as not
all the genomes from the 6th century are related. For example, two dif-
ferent Y. pestis strains were identified in the same site in the South of
France (Keller et al. 2019). The study of Justinian plague strains has
also revealed interesting facts related to cultural practices. The individ-
ual from which the British Y. pestis genome was recovered was found in
a single burial, indicating that the plague did not change the burial prac-
tices in this location, although the presence of mass burials has tradi-
tionally been linked with pathogenic outbreaks (Keller et al. 2019).

The understanding of the causes of the dramatic impact of pathogenic
outbreaks is crucial for the prevention of future pandemics. As an exam-
ple of this, it is relevant to mention the polemic surrounding possible fu-
ture Plasmodium outbreaks in the Mediterranean linked with changes re-
lated to global warming (Sainz-Elipe et al. 2010). Even that global warm-
ing will favor the malaria-related mosquito, which are still present in the
Mediterranean (fig. 5), it would seem that the European medical atten-
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Fig. 5. Distribution of the three relevant anopheles species present in Europe: A. atra-
parvus (red), A. labranchiae (green), A. sacharovi (purple) (from Piperaki et al. 2016).



tion standards as well as the capacity of the European governments to
conduct effective surveillance on the vector would prevent future malaria
outbreaks in Europe (Piperaki et al. 2016). 

2.3. Human health indicators evaluated with environmental samples

Paleogenomics are not restricted to the analysis of human bone and
teeth samples. The growing attention of paleogenomics linked with the
new technical improvements after the development of NGS techniques
has promoted the number of studies that have targeted aDNA from mul-
tiple and alternative sources (fig. 6). Up to date, aDNA has been ob-
tained and analyzed from: ancient shells, ceramic objects, skin and hair
tissues, environmental samples such as lake cores, plants, ancient
seeds, laboratory preparations, books, coprolites, dental calculus and
animals (see Green et al. 2017). Some of these sources potentially con-
tain DNA that can be used to infer health conditions of ancient human
populations or study the connection between human populations and an-
cient environments.

Commensal bacterial, fungal and viral species are found in all the human
tissues exposed to the environment such as; mouth, ear, skin, digestive
track or reproductive organs. The commensal microorganisms play critical
roles in host immunity, metabolic pathways or stress response (Koskella
et al. 2017). The diverse environments that host all these species are
known as microbiomes. Microbiomes vary within people, populations and
time (Davenport et al. 2017). The composition of these tissues has been
observed to be related to the genetics of the individual but also with habits
such as diet or medical drug treatments. In recent years, the usage of
NGS techniques together with refined bioinformatic pipelines has enabled
the study of multiple human microbiomes (fig. 7). 

The human oral microbiome is a complex ecosystem that plays impor-
tant roles related to human health. Its alterations can also cause dis-
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Fig. 6. Sources from which ancient DNA has been
obtained: a) crops, seeds and plants, b) fecal sam-
ples, c) ceramic objects, d) ancient insects, d)
dental calculus, e) ancient medical preparations, f)
ancient books and parchment, g) ancient shell, h)
ancient capillary, i) ancient bone and teeth. 



ease such as cancer, depression or metabolic disorders (Gill et al. 2006,
Turnbaugh et al. 2007; He et al. 2015). The study of the oral micro-
biome can also provide information about past diets that can be obtained
from dental calculus (e.g. Weyrich et al. 2015; Weyrich et al. 2017).
Both ancient genomes and proteins can be obtained from dental calculus.
The study of past dental calculus has revealed insights on the diet of the
ones that suffered the great Irish Famine (1845-1849), the recon-
structed diets from different individuals provided information about sex
specific patterns (Geber et al. 2019). Interestingly, the metagenomic
data can be preserved for thousands of years as the reconstruction of
a Neanderthal dental calculus evidenced. This study showed that the Ne-
anderthal microbiome composition was more similar to the one of a pre-
sent day chimpanzee rather than to the microbiomes of modern humans,
pointing the great connection between diet and microbiome (Weyrich et
al. 2017) (fig. 7). In a shorter scale it has also been observed, by the
comparative study of dental calculus, that oral microbiomes correlate
with the diet in different periods, and a major shift is observed in modern
times, while populations from the Neolithic to the Middle Ages have sim-
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Fig. 7. Neanderthal-human- chimpanzee mi-
crobiome comparison. Oral microbiota com-
parison from metagenomic shotgun
datasets (from Weyrich et al. 2017).



ilar microbiome profiles (Adler et al. 2013). A very recent discovery has
also revealed the potential of human-used objects to assess the oral mi-
crobiome composition as it is the case of a Stone Age chewing gum
(Jansen et al. 2019).

Coprolites, which can be normally found in mummified bodies (Tito et
al. 2012) are another source of intestinal microbiomes. Alternatively to
mummified bodies, coprolites can be also naturally preserved in caves,
as the ones studied in a Clovis Culture cave in Oregon, dated to 14,000
years BP. This source allowed the sequencing and analysis of the mito-
chondrial DNA of Clovis settlers, that showed the typical Paleoameri-
can mtDNA haplogroups (Jenkins et al. 2012). Coprolites can preserve
parasites and commensal species of the gut microbiome, as well as the
food present people ingested right before dead (Poinar et al. 2001; Tito
et al. 2012) (fig. 8). Several studies have already shown the potential
of this method, especially with very well preserved human remains such
as the body of the Iceman from the Alps (Maixner et al. 2015). Never-
theless, The approach is not free from limitations, as metagenomic
samples from the intestinal tract can be easily recovered contaminated
by modern bacterial and fungal species, as it has already been revealed
(Tito et al. 2012). An especial mention must be arisen when referring
to the capacity of discrimination between modern and ancient bacterial
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Fig. 8. Eighth-century coprolite used for ancient DNA analysis (Tito et al. 2012).



DNA. The technique that is currently used is basically identifying the
species found in the sample and assessing the contamination based on
the presence of deamination signals. This approach however has a
strong limitation which is that is not able to detect and study ancient
bacterial species that are not found anymore, as we do not have its in-
cluded in the reference panels. 

The environment has a strong effect in the gene expression, although
it is not easy to explore this connection in ancient samples. Epigenetics
are described as the mechanisms that affect the expression of genes
during the life of the individual, which means that these signals do not
alter the genetic sequence but affect how genetics are expressed in the
individual. There exist several modifications that the environment can
cause on the DNA sequences, however only DNA methylation can be
easily assessed from ancient remains (Llamas et al. 2012; Smith et al.
2015). These modifications are known to be associated with multiple bi-
ological traits; many epigenetically regulated genes are relevant during
the embryogenesis and human development, and alterations on its can
be the cause of disease or abnormal development (Okano et al. 1999,
Gokham et al. 2020), mostly through the silencing or enhancing of dif-
ferential gene expression (Jones et al. 2012). There are multiple factors
that are responsible for these differential expressions such as: the com-
position of the diet, exposure to heavy metals or exposure to chemicals
or even changes in the climate that result in temperature fluctuations
(Cao-Lei et al. 2014). It has been shown that the exposure of humans
to catastrophes can result in alterations in the methylation patterns as
for example the Dutch famine of 1944-1945 (Veenendaal et al. 2013)
or the Ice storm that devastated Quebec in 1998 (Cao-Lei et al. 2014). 

The listed examples evidence that the contribution of archaeogenetics
to the assessment of health is not just limited to the study of pathogens
in ancient human skeletons, which is probably the most well-known appli-
cation, but also to the environmental and genetic factors that are the
source and the consequences of the interaction of the human popula-
tions with disease. In the next section the most relevant conclusions and
the possible future directions of the field are presented. 

3. Conclusions and new perspectives on archaeogenetics related to
health status

The study of ancient genomes and metagenomes for assessing the
health conditions of past populations is gaining popularity in the field of
archaeogenetics, as it can be observed by the increasing number of pub-
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lications that target health-related questions. Researchers have made
big efforts in recovering diverse diseases from ancient human remains
that have allowed the sequencing of multiple pathogens and commensal
species from a wide variety of environments. 

The macroscopic study of disease has already shown how human pop-
ulations have suffered, adapted and coped with past major health prob-
lems issues. In the future, a closer connection between archaeology,
pathogen recovery and environmental data can yield to the understand-
ing of the differential causes of mortality and morbidity in past popula-
tions, as well as to a much accurate estimation of the consequences of
past diseases in human history. This data complemented with the genet-
ic scans on the human genome can also help to understand the evolu-
tionary fingerprint of disease in the human genome and populations.

For a more accurate understanding of the health conditions of past
populations and individuals it is crucial to be conscious of aDNA in the
recovery and discrimination of results, which means that a negative re-
sult can never be understood as a definitive statement. And more rele-
vant it is strictly necessary to contextualize the genetic and molecular
findings with historical and archeological research to avoid biases due to
an erroneous study design, an inadequate sampling or a weak under-
standing of past conditions context. If these limitations are considered
and the synergy between multidisciplinary researchers grows, with the
available techniques and information, it is possible to arise a very precise
understanding of the living conditions of past cultures as well as a very
accurate estimation of past mortalities, morbidities and selection forces. 
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