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1. Introducti̇on 
 
Archaeologists see in the present objects, whose shape, size, texture, material 

and mechanical properties can be described and even quantified. They do not 
‘see’, however, bowls, amphorae, knives or swords. Archaeology is a problem 
solving discipline trying to solve the “what is this?” problem by logical inference. 

Archaeological identification problems can be solved when we learn a rule for 
grouping the geometric, material or mechanical features of the observed objects 
by virtue of which they belong to sets of material effects of the same social ac-
tion. We will understand what a pot, a house, a castle, a burial, a tool were (in the 
past) when we learn how to link the observed element to a prototypical pot, 
house, castle, burial, or tool. If such association is statistically reliable then all we 
know about the prototype – how it was produced or used in the past – can be 
transferred to the observed element from the archaeological excavation. The 
prototype is just a “virtual” – ideal – instance explicitly built from a theoretical 
model, which predicts features that can be perceived in the archaeological 
record. We may not be able to identify the causal process completely, but we 
can construct a good and useful approximation (Barker 2020; Longo 2021).  

Consequently, one of the most fundamental notions for archaeological infer-
ence is that of similarity: the solutions to an archaeological problem group to-
gether things that are similar. Two entities are similar because they have many 
properties in common. According to this view (Medin 1989): 
1. similarity between two entities increases as a function of the number of prop-

erties they share; 
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2. properties can be treated as independent and additive;  
3. the properties determining similarity are all roughly the same level of abstract-

ness; 
4. these similarities are sufficient to describe a conceptual structure: a concept 

would be then equivalent to a list of the properties shared by most of its in-
stances. 
Ideally, objects are similar because they were manufactured and/or used in 

the same way, in the same place and at roughly the same time for the same in-
tended goal or function.  

 
 
2. From clustering to learning 
 
Clustering is the process of grouping input samples into similarity classes. 

Each object is represented as an ordered set (vector) of features. ‘Similar’ ob-
jects are those that have nearly the same values for different features 
(Rousseeuw, Kaufman 1990; Engel, van der Broeck 2001). Clustering is usually 
distinguished from classification on the basis that the first implies a mere objec-
tive partition of a set of data according to some rule – objects are enough similar 
between them – whereas the second is a form of categorization by which ideas 
and objects are recognized, differentiated and understood. Statistical classifica-
tion is the set of methods used to identify new observation as belonging to a pre-
defined category, on the basis of a training set of instances of that category 
(Hoehne 1980; Niknazar, Bourgault 2017). In archaeology, the term typology 
should be related with this last form of categorization, in the sense that proto-
types should be ideal instances of explanatory categories (Adams 1988). Unfor-
tunately, too many archaeological ‘typologies’ merely divide space and time into 
disjunctive classes – objects that have the same form because they were made 
in the same historical place and time, and lack more explanatory categories: 
functionality, manufacturing, etc. 

The archaeological problems – “what is this”, “how it was made”, “why did 
they made such objects in that way?” – cannot be reduced to mere clustering. 
We need additional information, beyond the resemblance in shape, visual, mate-
rial, mechanical properties and spatial and temporal provenance. We need to 
test whether the objects have these particular regularities because they were pro-
duced and/or used in the same way. We should move beyond statistical cluster-
ing into concept learning. Objects with the same triangular shape, for instance, 
cannot be functionally explained until we learn that ‘arrow points’ are triangular in 
shape to stick more efficiently into the animal’s muscle and been able to kill the 
deer. We need to compare objects that prove to be similar enough to some ob-
jects of reference, that is, prototypes or known instances of a given concept.  

Juan A. Barceló, Florencia Del Castillo, Deniz Kayikci, Borja Urbistondo
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What we need is a form of supervised learning, on the grounds that some 
known instances of a particular cause-effect relationship are used. In this para-
digm, an agent learns to classify stimuli as members of contrastive categories 
through trial and error with corrective feedback (prior knowledge) (Kotsiantis et 
al. 2007; Cunningham et al. 2008; Jiang et al. 2020). Known examples of a par-
ticular input-output mapping may be experimental replications and/or ethno-his-
torical data. In other words, the idea is to look for common features between pos-
itive examples of the causal relationship to be predicted, and common differ-
ences between its negative examples. This task is exactly like an example of a 
truth-function learning problem 

 
 
 
 

 
Concept learning problems have the same form, except that target outputs 

are either ‘yes’ or ‘no’ (or ‘true’=1 and ‘false’=0). Inputs that map onto ‘yes’ are 
treated as positive examples of a particular concept. Inputs that map onto ‘no’ 
are treated as negative examples (i.e. counterexamples). The process of finding 
a solution to such a problem is naturally viewed as the process of calculating the 
communalities among positive examples. As such, it is a variation of the philo-
sophical theories seeing induction as a process involving the exploitation of sim-
ilarity. Positive instances of some predefined concept can be used as a reward 
when trying to learn the concept from which they are instances. Negative in-
stances punish the learning process. The aim is to learn the action that will 
achieve the highest reward and the lowest punishment (feedback). 

For best generalization we need an algorithm able to match the complexity of 
the hypothesis with the complexity of the function underlying the data. If the hy-
pothesis is less complex than the function, the resulting model will be underfitted. 
If the hypothesis is too complex, or the data is not enough to constrain it, we will 
end up with a bad hypothesis. If there is noise, the resulting model will be over-
fitted because it is not only based on the underlying function but also on the 
noise in the data. In such a case, having more examples, or known instances 
helps but only to a certain point (Alpaydin 2004).  

 
 
3. The advantage of neural networks 
 
Since the early days of Numerical Taxonomy, mathematicians have produced 

hundreds of algorithms to ‘measure’ similarity and to build clusters of similar ob-
jects. Clarke (1968), Doran and Hodson (1975) and Baxter (1994) exemplify the 
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first essays in archaeology. Since that time archaeologists have been powered 
by advances in statistical software packages to build ‘classes’ of similar objects 
(Read 2007; Hammer, Harper 2008; Van Pool, Leonard 2011; Barceló, Bog-
danovic 2015; Carlson 2017; McCall 2018). The problem is that we cannot as-
sume that clusters of similar objects are meaningful in themselves because they 
are not generalizable out of the specific limits of the input data used.  

Neural networks are a special kind of algorithm able to learn non-linear and 
non-monotone input-output relationships. They have three main characteristics 
that have contributed to the wrong idea that they mimic the way the human brain 
operates: they work in a distributed and parallel way; they are also the result of 
adaptive process of learning. ‘Distributed’ means that calculations are decom-
posed into thousands of basic calculations between some basic computational 
units. ‘Parallel’ means that all those calculations are made simultaneously and all 
of them contribute to the final solution. ‘Adaptive’ means that they learn through 
reinforcement of rewards in successive ‘evolutive’ steps. 

What is commonly refereed as an ‘artificial neuron’ is a simple input-output 
non-linear calculation, in which a number of discrete numeric inputs are summed 
and when this sum exceeds a predefined threshold, a numeric output is pro-
duced (fig. 1). 

By linking many of these artificial neurons, we build a neural network. Not any 
linking topology is efficient, however. The most popular is a multilayer topology 
in which a subset of input units receive external numerical information, which is 
sent to a different subset of hidden layers of artificial neurons through weighted 
links. The input units only read external information and send it forward. All input 
units have links with all artificial neurons in the hidden layer, although not be-
tween them, in the sense that the individual contribution of each input unit is as-
sumed to be independent. Numerical inputs arrive to each hidden unit ‘trans-
formed’ – multiplied – by the particular weight each link has. Each hidden neuron 
receives information from all inputs, integrates it and execute a simple non-linear 
function: it sends a numerical signal (1 or 0) to a third layer of artificial neurons, 
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the output layer when the weighted integrated input signal exceeds a threshold. 
Each artificial neuron in the output layer receives as many inputs as units in the 
hidden layer, meaning that all hidden neurons are connected to all output neu-
rons. This input is also transformed – multiplied – by the particular weight each 
link has. Output neurons activate at different degrees, depending on the way 
they integrate the numeric information they receive from the hidden layer. 

Imagine we have some prehistoric pottery vases. Input information – shape, 
color, decoration, material properties – has been decomposed into single input 
units: rim, neck and maximum diameters, the height of those diameters, the pres-
ence/absence of painted decoration, the presence/absence of geometric de-
signs, the presence/absence of white or red slip, etc. There is a single output: 
whether the vase is of Mycenaean origin or not. The idea is that when a vase is 
described using the input units, the algorithm will answer with the probability of 
whether can be of Mycenaean origin or not (fig. 2). 

To be able to link the input with the output, link weights have to be ‘learnt’ from 
some training data. We need a big enough collection of pots with known prove-
nience, some of them are known to be Mycenaean, and others are known to be 
from alternative cultural proveniences. We need more or less the same amount 
of Mycenaean and Non-Mycenaean pots to learn this particular relationship. The 
most known learning algorithm to solve this kind of problem was invented in 1986 
by David Rummelhart, Geoffrey E. Hinton and others, and it is called Backprop-
agation (Rumelhart et al. 1995; Wythoff 1993; Hegazy et al. 1994; Kishore, Kaur 
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2012; Islam et al. 2019). At first, link weights are randomly initialized using ran-
dom and very small numbers. When the first training instance is presented, its 
numerical input is transformed by random weights between the input and the 
hidden layers, this information arrives to hidden artificial neurons, which compute 
their non-linear summation and send a numeric output to the last layer. The out-
put from hidden layers is also transformed by randomly initiated weights of links 
between the hidden and the output layers. This transformed signal arrives to the 
output layer and its artificial neurons are activated according to the intensity of 
the signal arrived and the particular activation function implemented. Obviously, 
because weights have been determined randomly during start-up, the final out-
put is also the result of random decisions. The algorithm then compares what has 
been randomly calculated with what is known from the database of training ex-
emplars, and calculates the difference. This error is sent backwards to modify 
weighted links, and the process begins with a new exemplar. The full training set 
is presented many times until the error between what is calculated and what is 
already known minimizes enough. 

Once learned, a neural network can be used as associative memory, and 
therefore it assigns to new unseen inputs, the output that probably corresponds. 
It is a distributed representation of scientific knowledge because causal and 
other explanatory associations are stored throughout all the connections in the 
network, and because one set of connections can store several different associ-
ations. After learning, when using the network to categorize a new input, if the as-
sociative mechanism runs properly, then the pattern of activation in the output 
neurons will be the pattern that was originally associated with the cue pattern 
(Dawson 2004).  

The learning process allows the model to determine, completely independ-
ently, which combinations of input nodes best predict the already known output 
values. Each hidden node in the artificial neural network serves to define specific 
connections within the input. The extent to which each input contributes informa-
tion can vary between each hidden node, resulting in a model that can simulta-
neously consider input information in any combination to define different and 
complex relationships between input and output values. Similarly, an artificial 
neural network for multi-label classification predicts the probabilities of each out-
put node independently of all other nodes, allowing information to be simultane-
ously classified into multiple categories, which distinguishes this classification al-
gorithm from others, such as discriminant analysis, because the neural network 
does not compute the probabilities of outputs in conjunction with or in opposition 
to any other output (Lin 2021). 

The advantages of this way of learning what archaeological elements may be 
– the concept to which they probably belong – are obvious. First of all, the rela-
tionship between input and output, between description and explanation can be 
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non-linear, when classical statistical classifers are limited by the intrinsic linearity 
of distinctions they can reproduce. Second, input information is distributed 
among minimal processing units, and there is no limit in the number, diversity 
and nature of them. Qualitative attributes can be added to quantitative ones. 
Parametric assumptions, normality or symmetry are not required. Any way to de-
scribe shape, size, visual appearance, materiality, mechanical properties, spa-
tio-temporal coordinates can be integrated. Independence of inputs is assumed, 
but this is not an important requirement, because the learning algorithms will find 
a solution even in the case of strong dependency among inputs. The search for 
the best solution will be less efficient, but provided we have a big enough train-
ing set, adequately distributed between positive and negative instances of out-
put categories, a solution will be found. The same is true for output units, that is, 
explanatory categories to be assigned to input information. In archaeology, ex-
planatory categories are usually reduced to verbal labels: bowl, type 2A, knife, 
house, late Bronze Age, social elite, and the like. Using a neural network ap-
proach, explanations can be defined both by extension – the set of their positive 
instances in the training set – and by intention – in terms of the non-linear rule as-
sociating inputs with outputs. They also have a fuzzy nature. When actual input 
values enter the system, the entire memory fires at once, producing multiple out-
puts, and each output has an activation degree that can be expressed as a fuzzy 
number or even as a probabilistic value by including some constraining links be-
tween output neurons (Principe et al. 2000). 

There is a drawback, however, the relationship cannot be expressed in sim-
pler terms: it is a computational system that works well, but we do not ‘see’ how 
it works, because the association is distributed in the simultaneous activation of 
many minimal computing units. Due to this particularity, the processes, calcula-
tions and intrincaces that occur among the neurons which can’t be seen, are 
often referred as the “blackbox” of neural networks. In any case, what in some 
sense can be considered as a limitation, in the other sense it is an advantage: 
because of the distributed and parallel nature of neural computing, even partial 
inputs can produce the activation of some outputs. If the object we want to cat-
egorize is broken, incomplete or post-depositionally altered, some input units will 
not be activated because of absence of information, or they will activate at a 
minor degree, depending on the ambiguity, presence of noise or uncertainty in 
descriptive information. Even in those circumstances, the remaining input signal 
flows through the weighted links and hidden neurons until the output. Obviously, 
this is not the same activation as when input is clear and complete, but we have 
some potential explanations, expressed in fuzzy terms, or even as a probability 
confidence level. 

Neural networks began to be applied to solve archaeological classifications 
problems very early after the first publication of the classical backprop algo-
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rithm. J.A. Barceló (1993; Barceló et al. 1996), J. Fulcher (1997), Gibson (1992, 
1995), Bell and Croson 1998, Reeler (1999) are among the very first applications 
of this procedure in archaeology. Rock art, lithic tools, animal bones and prove-
nience of archaeological objects based on composition were the applied do-
mains. At that time, software implementation was still poorly efficient, and input 
information should be entered in form of discrete numeric variables or binary at-
tributes. The difference with classical clustering and statistical classification and 
regression methods was not evident at the beginning, and archaeological appli-
cations were not very diverse nor abundant (Al-Nuaimy et al. 2000; Zupanek, 
Mlekuz 2001; Bell, Jantz 2002; Ducke 2003; Barceló, Pijoan-Lopez 2004; Besco-
by et al. 2004; Lohse et al. 2004; Deravignone, Macchi 2006; Maaten 2006; 
Barceló 2009, 2010; Deravignone 2009; Ramazotti 2013; Spars 2013; Banerjee, 
Srivastava 2014; Alunni et al. 2015; Deravignone et al. 2015; Sharafi et al. 2016). 
Nowadays, building three layered feed forward neural networks and learning 
them using backpropagation algorithms and their variants are implemented in 
general use statistical software (SPSS, STATISTICA) and there is a wide variabil-
ity of OpenSource and freeware implementations (NeuralNet in R, SimBrain.net, 
Aispace.org’s neural networks package in java web, justNN, Sharky-neural net-
works, memBrain, Neocognitron, neuralDesigner, among many others). Users 
should only create a spreadsheet file in which columns define different inputs, 
and rows represent the value each training sample has on each input. In the 
same way, known outputs are necessary for the correct running of the back-
propagation algorithm. Archaeological possible applications range from classi-
fication and typology, functional analysis and use-wear, spatial analysis in 
cemeteries, site prediction modelling, etc. 

The advantages of neural networks over other methods of statistical classifi-
cation and machine learning lie on their capacity to deal with huge quantities of 
data and with heavy distributed representations. The dream of archaeologists 
has always been to process images directly. This can be realized by using pic-
tures as the network input (a lithic tool, a pottery, an engraving, an animal or 
human bone, etc.) and the output its best explanation (a chronology, a function, 
a provenience, etc.). Given the complexity of images, composed of pixels, we 
need to adjust the general structure of the neural network. It is an this point that 
‘deep’ learning begins. 

 
 
4. ‘Deep’ learning 
 
The word ‘deep’ in ‘deep learning’ refers to the number of layers through 

which input data is transformed. When including extra layers, we can enable 
composite features from lower layers, potentially modeling complex data with 
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fewer units than a similarly performing shallow network. All those additional lay-
ers are also organized into levels, and each level learns to transform its input 
data into a slightly more abstract and composite representation. In an image 
recognition application, the raw input may be a matrix of pixels; the first repre-
sentational layer may abstract the pixels and encode edges; the second layer 
may compose and encode arrangements of edges; the third layer may encode 
an identified geometric decorative motive; and the fourth layer may recognize 
that the image represents a pottery vase of a particular kind, characteristic of a 
limited historical period in some geographical area. By using multiple layers it is 
more efficient to progressively extract higher-level features from the raw input. 
Layers are also permitted to be heterogeneous, for the sake of efficiency, train-
ability and understandability, whence the ‘structured’ part. This distributed form 
of knowledge representation eliminates feature engineering, by translating the 
data into compact intermediate representations akin to principal components, 
and derive layered structures that remove redundancy in representation. 

Convolutional Neural Networks (CNN) are a special kind of ‘deep’ multilayer 
feed forward neural networks with additional layers (‘convolutional’) to extract 
features from input images. It also does so in such a way that position information 
of pixels is retained. Each neuron in the convolution layers receives input from 
only a restricted area of the previous layer called the neuron’s receptive field. 
After passing thorugh the convolutional, the transformed input information pass 
thorugh consecutive pooling layers to reduce the dimensions of incoming feature 
maps. After passing through the convolutional layers, the image becomes ab-
stracted to a feature map, also called an activation map, and pass its result to 
the next layer. The last layers provide the probabilities of a given class (Guo et 
al. 2016). This network also learn from given examples (generally a very large set 
of labelled images). During forward-propagation the input image is fed through 
the different layers with the current parameters (weights and bias) fixed. The out-
put is compared to the ground truth labels (the same manu ally labelled image) 
and used to calculate the loss cost. Based on the loss cost, the gradients of each 
parameter are computed and used to update all parameters during back-prop-
agation. All layers are then prepared for the next forward-propagation.  

In 2012, Krizhevsky et al. (2012) trained a large, deep convolutional neural 
network (AlexNet) to classify 1.2 million high-resolution images into 1000 differ-
ent classes. They used a global image database organized according to a con-
ceptual hierarchy in which each node of the hierarchy is depicted by hundreds 
and thousands of images (ImageNet: https://image-net.org/update-mar-11-
2021.php. In its time, it was the largest image database ever built). The first neu-
ral network able to learn this very complex image recognition task had 60 million 
parameters and 650,000 neurons, and was built in terms of five convolutional lay-
ers, some of which are followed by max-pooling layers, and three fully-connect-
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ed layers, with a final 1000 neurons in the output layer where classification was 
produced. The network obtained a huge classification success, and opened the 
current popularity of convolutional neural network models, which are now ubiq-
uitous for computer vision tasks like image classification, object detection, image 
recognition, etc. 

After AlexNet, CNN architectures have increased its depth – number of hid-
den layers – to increase image recognition success. Hence, more layers seem 
to promise better performance. This is the case of VGG Net, with 16 to 19 layers 
(Vedaldi, Zisserman 2016) and GoogLeNet, a 22-layer deep convolutional neural 
network, using 224 x 224 input images (Szegedy et al. 2014). 

Nevertheless, increasing network depth does not work by simply stacking 
layers together. Deep networks are hard to train because of the notorious van-
ishing gradient problem – as the gradient is back-propagated to earlier layers, 
repeated multiplication may make the gradient infinitively small. As a result, as 
the network goes deeper, its performance gets saturated or even starts degrad-
ing rapidly. To solve these problems, the Residual Neural Network model 
(ResNet) was introduced in 2015, with the core idea that some neurons should 
not always connect with neurons contiguous layers. This network topology imple-
ments shortcuts to jump over some layers based on skip weights learnt using an 
additional weight matrix (He et al. 2016).  

All these architectures of deep neural networks are downloadable by any 
user, and ready to be used for any complex classification task. Some models 
are implemented in MatLab platform1, for Keras2, or Torch3 among many others. 
In addition to use an already tested architecture, we can ‘pre-train’ the network 
with some universal image repository like ImageNet. The idea is to begin learn-
ing not with random weights between layers, but with a network able to carry out 
a global task. If you want the network be able to classify between kinds of lithic 
knives, it would be very positive to begin with a network able to distinguish 
knives from arrow points and scrapers. Then, our network will begin learning a 
more specialized classificatory task once the weights necessary for distinguish-
ing basic classes have already been learnt. In a way, it is a form of fine-tuning 
a pre-existing classificatory system (also known as transfer learning). By import-
ing a pre-trained convolutional neural network as AlexNet or VGG19, the feature 
recognition part of the network can be shortcutted effectively, allowing most of 
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the effort done by the researchers to be focused on the design of the fully-con-
nected part specifically programed to fulfill its task without even having to mod-
ify the previous convolutional layers if needed (Zabir et al. 2018, Conde, Turgut-
lu 2021).  

 
 
5. Deep learning in archaeology 
 
Quantitative based classification of pottery vases has been traditionally 

based on mineralogical and petrographical data. Bell and Crosson (1998), Bax-
ter (2006), Ramil et al. (2008), Kvascev et al. (2012), Barone et al. (2019) have 
explored the use of simple three layer neural network applications for classifying 
pottery vases based on its mineralogical and petrological composition. Aprile et 
al. (2014) have followed a more complex approach using thin slide microscopic 
images instead of compositional data vectors. These authors used both plane 
and cross polarised light images acquired via a digital camera connected to op-
tical microscopy in transmitted light to classify mineral inclusions (quartz, calca-
reous aggregates and secondary porosity) from Holocene potsherds (8900-4200 
years BP) from Central Sahara.  

Classifying pottery vases in terms of their visual appearance – shape, form, 
surface finish, decorative patterns – has been a classical expert task, relying on 
the particular and subjective experience of well trained individuals. The low effi-
ciency of early neural networks, and the classical success of multidimensional 
statistics (Read 2007) prevented the application of machine learning procedu-
res. Nowadays, the idea is to use images as input to distinguish between functio-
nally, stylistically or historically different pottery productions using some kind of 
deep neural network. According to Tyukin et al. (2018) there are two possible le-
vels on which automated computer recognition can be performed. One appro-
ach would be based on building detectors which will identify the object of inte-
rest – e.g. a complete vessel – in a 2D picture. In this case, we should create a 
separate detector for each artefact. If one of the detectors finds something in a 
picture of more than one vessel, we assume that this picture contains an artefact 
of a certain previously identified type. Since we know which detector exactly 
fired, we know the type of the artefact and the recognition is completed by this 
step. This would be a low-level recognition. The opposite approach is to build a 
detector that can ‘find’ all types of objects of interest in a picture of more than 
one artefact. In this case, when the detector fires, we still do not know exactly 
which artefact was found. We should send each candidate to a second compu-
tational stage, where a specially trained neural network would identify which type 
of object it is, according to existing classifications or typologies. In contrast to the 
low-level approach, this one would be a high-level one.  
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The ArchAIDE system (Gualandi et al. 2021) is one of the most advanced ap-
plications of deep neural networks to classify pottery vases based on shape geo-
metric factors as: Outer profile, Inner profile, Handle outer profile (if present), 
Handle inner profile (if present), Handle section (if present), Rim point: the top 
point in the profile, Base point: the bottom point in the profile, Scale factor: the 
scaling value to bring all features to real scale. 

In the same way, Cintas el al. (2020) have trained a convolutional neural net-
work using 1133 binarized images of pottery profiles, already classified by do-
main experts into 11 different classes of wheel made pottery from the upper val-
ley of the Guadalquivir River (Spain) and dated to Iberian period; nine of them 
correspond to closed shapes, and the two remaining correspond to open sha-
pes. From a digitized profile, the system can determine with high accuracy and 
precision the category to which the ceramic vessel belongs. This representation 
allows the identification of which shapes of a given vessel is nearer or farther. 
Images of 64 × 64 pixels were feed to the input layer, whereas the output layer 
is composed of 11 output units for the classes and types to be predicted. The 
resulting model is able to provide classification on profile images automatically, 
with an accuracy mean score of 0.9013 when compared to classificatory deci-
sions by domain experts based on morphological criteria, taking into account 
the presence or absence of certain parts, such as lip, neck, body, base and 
handles, and the ratios between their corresponding sizes. The same authors 
have expanded the project using an alternative neural network architecture (Na-
varro et al. 2021). They have used a residual neural network for automatically 
extracting learned features and enhance the previous classifier of Iberian cera-
mic pottery.  

Alternatively, Dia et al. (2021) perform analysis and classification of tomogra-
phic images of ceramic fragments.  

Pottery decorative patterns can be classified in a similar way, using pictures 
and/or surface models of the vessel. Chetouani et al. (2020) have studied early 
medieval pottery sherds engraved with repeated decorative patterns using a 
carved wooden wheel, about 1 mm deep and 1.5 to 3 cm wide, depending on 
the dimensions of the wooden cylinders used by the potters. The most common 
patterns notched by potters on wooden cylinders included sticks, squares, che-
vrons and diamonds in one or several lines. The inputs used in this work were 
greyscale relief maps instead of binary images. The authors experimented with 
pre-trained AlexNet, VGG16, VGG19 and ResNet50 to fine tuning the outputs 
with their dataset. The typical output layer of those universal image recognizers 
was modified and adapted to the number of solutions for the case at hand (four). 
The system obtained a classification successful rate of 95.23%.  

Moscoso Thompson et al. (2021) is another example of pottery decoration 
classification using convolutional neural networks. A ResNet pre-trained convo-
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lutional neural network was re-trained using images of pottery fragments deco-
rated with relief patterns. The system has allowed segmenting reliefs of repeated 
motifs and decorations on the surface of an archaeological artefact using super-
vised learning to obtain the classification of the individual pixels of images extra-
polated from 3D models.  

Pawlowicz and Downum (2021) study a specific kind of ancient painted pot-
tery from the American Southwest. They have collected an initial set of 3064 pho-
tographs of a particular type of sherds, which were stylistically classified by four 
experts in seven major types, as well as two less common types, and categories 
of ‘Other’ and ‘Indeterminate’. The system also gives the option to select interme-
diate/mixed types comprised of temporally and stylistically adjacent types. A sli-
ghtly modified versions of the VGG16 and ResNet50 convolutional neural net-
works were chosen given the availability of pre-trained model weights. Input ima-
ges were standardized and resized to 224 × 224 pixels, and converted to gray-
scale, to remove any effects of sherd discoloration from soiling or weathering, or 
variations in white balance when photographing the sherds. Results showed far 
geater agreement than human experts. 

Before leaving deep learning applications in the pottery analysis domain, we 
should mention Reese’s (2021) predictions of site occupation time spans based 
on the identified type of dominant pottery. The analytical focus is put explicitly on 
the temporal relationship between ceramic assemblages and dates of occupa-
tion. The training dataset includes a total of 118 sites for which both ceramic type 
frequencies and tree-ring dates are available. Each row in the input table repre-
sents one site, and each column represents the total frequencies of each cera-
mic type identified at the corresponding site. Normalized ceramic data are used 
instead of raw counts because these re-scaled values are directly comparable 
between sites regardless of the total number of ceramics identified. The number 
of nodes in the input layer of the neural network is 14 – each representing a dia-
gnostic ceramic type – and the number of nodes in the output layer is 851 – one 
for each year from AD 450-1300. After some experimentation, the optimal num-
ber of nodes within the hidden layer is 18, and the optimal smoothing window is 
21 – meaning the model produced the most accurate results when the smoothing 
window applied to the predictions was similar to the average use-life of a small 
site residential structure across the entire study period (average use-life from AD 
450–1300 was approximately 19 years). This combination creates an artificial 
neural network with a minimum 72.4% accuracy, and an average annual predic-
tive accuracy of 93.5% for the AD 450-1300 study period. Once the optimal pa-
rameters were identified, the trained artificial neural network was applied to sites 
across the central Mesa Verde region with a residential component. Of the 7600 
recorded sites with a residential component, approximately 60% have a corre-
sponding ceramic tally reporting frequencies of ceramic types, approximately 
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20% have a ceramic tally that does not report any diagnostic wares or only re-
ports the presence/absence of various ceramic types, and approximately 20% 
have no reported ceramic information. This means occupation can be predicted 
for 60% of sites in the central Mesa Verde region using the trained artificial neural 
networks, but other steps must to be taken to account for the remaining 40% of 
sites. Results from the artificial neural network analysis, extrapolated to unsurve-
yed areas and smoothed by life-expectancy, are used to estimate annual popu-
lation of the central Mesa Verde region from AD 450-1300. 

The shape of lithic tools can also be classified using supervised neural net-
works, as shown by Nash and Prewitt (2016) and Grove and Blinkhorn (2020). 
These authors have used a quantitative analytical framework based on the use 
of neural networks to distinguish the changing technologies between the Middle 
and Late Stone Ages in East Africa. The trained network correctly classified more 
than 94% of them and identified 7 basic technologies that significantly discrimi-
nated between classes (see also Resler et al. 2021). 

The analysis of cut marks on the surface of bones and prehistoric or ancient 
tools is another relevant image-based archaeological task where neural networs 
can be applied for classificatory purposes. Byeon et al. (2019) and Domínguez-
Rodrigo et al. (2021) have defined deep convolutional neural networks (DCNN) 
to recognize marks with accuracy that far excedes that of human experts (91% 
over 63%). Zotkina and Kovalev (2019) have explored traces and marks left on 
the surface of prehistoric rock-art panels, trying to distinguish two types of tool 
marks: metal and lithic, and a natural surface as well. Input data adopts the form 
of 3D local descriptors using 3D key points – points in a point cloud that are sta-
ble, distinctive, and can be identified using a well defined detection criterion. In 
a preliminary step, key points with rich information contents are first identified 
and their associated scales (spatial extents) are then determined. In a second, 
feature description phase, local geometric information around a key point is ex-
tracted and stored in a high dimensional vector (i.e., feature descriptor). Neural 
network training is based on a set of descriptors of key points taken from a point 
cloud of a certain shape. Then, upon receipt of a test set of descriptors obtained 
from the test point cloud, the neural network can determine the presence of 
points forming such 3D compositions. 

Remote sensing is another quintesentially visual analysis task. Computer 
driven image analysis offers a way to rapidly extract archaeological information 
from such very high resolution images, and can even be used to detect objects 
of interest that are not visible to the naked eye. Pixel-based classification ap-
proaches use the smallest entity within an image, the picture element (or pixel), 
in order to extract the feature information in relation to one or more predefined 
classes. Each pixel can be addressed by the x and y coordinates of the two di-
mensional image space, and can be attributed with one or more values derived 
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from the z axis, which is formed by the multiple layers of the dataset. In all cases 
the attributes of each pixel (in most cases, one or more spectral values) function 
as the basis for the classification, in which an assembly of pixels with similar at-
tribute values form an arrangement describing, for example, an archaeological 
element to be classified. The investigator uses known simple areas based on 
prior knowledge to ‘train’ the classifier to recognize areas in the image with sim-
ilar valued pixels corresponding to particular elements – burials, sites, agricul-
tural structures, defensive structures, etc. – differentiated from their neighbor-
hood. In contrast to the pixel-based approach, which starts from the basic enti-
ties of an image, an object-based analysis uses the entire image or data set and 
breaks it down into meaningful segments. One essential factor that distinguishes 
object-based approaches from the more traditional pixel oriented approaches is 
the integration of the image content into the classification procedure. The aim of 
this approach is to subdivide the image into homogeneous segments that de-
scribe the target features (pit, burial mound, etc.) as correctly as possible. The 
advantage of this approach lies on the superior reliability of image segments to 
closely represent real-world objects (Sevara et al. 2016; Ball et al. 2017; Fiorucci 
et al. 2022). 

Sharafi et al. (2016), Toumazet et al. (2017), Pasquet et al. (2017), Traviglia 
and Torsello (2017), Trier et al. (2018), Engel et al. (2019), Monna et al. (2020), 
Soroush et al. (2020), Berganzo-Besga et al. (2021), Guyot et al. (2021), Suh et 
al. (2021), are among the best examples of using neural networks and super-
vised learning algorithms to detect archaeological elements on aerial and satel-
lite images. Nowadays, Light Detection And Ranging (LIDAR) facilitates the 
identification of spatial features categorized as archaeological elements that 
were hitherto difficult to investigate, due to forest and other vegetation cover. 
LIDAR data can be presented to the convolutional Neural Network input layer in 
form of Shaded Relief Maps images. After extracting geometric and spatial fea-
tures, archaeological entities like ancient field delimitation or ancient roads can 
be identified (Verschoof, Lambers 2019; Verschoof et al. 2020; Olivier, Ver-
schoof 2021).  

Exemples discussed so far refer to images, that is 2D arrays of numbers. 
Deep learning methods can also be used to classify 3D geometric models of ob-
jects or buildings. The problem is much more complex than the already difficult 
problem of classifying high resolution images, and require more complex archi-
tectures (Maturana, Scherer 2015; Zhi et al. 2017; Qi et al. 2021). To pre-train 
such networks, and similar to ImageNet for 2D pictures of objects, the Prince-
ton’s ModelNet project provides a comprehensive collection of 3D CAD models 
of the most common object categories in the world (https://modelnet.cs.prince-
ton.edu/). ShapeNet is another large scale repository for 3D CAD models 
(https://shapenet.org/). 
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3D object identification is still underdeveloped in archaeology. However, 
some innovative work has been published on the use of neural network super-
vised learning for reconstructing objects from fragments. Hermoza and Sipiran 
(2018) show how these methods of machine learning can be applied to predict 
the geometry of missing parts in damaged objects. A neural network can be 
trained to complete what has been discovered incomplete. The goal of the 
method is to take a 3D scan of a fractured object as input and predict the com-
plete object as output. Colmenero-Fernández and Feito (2021) also propose 
using neural networks for three-dimensional volumetric reconstruction. Their ap-
proach is based on differentiating the area of interest of the profile using object-
oriented neural networks, graphic normalization, and the 3D volumetric model 
using object-oriented neural networks. It includes model computing analysis al-
gorithms that are trained to prevent loss of information in only one stage of de-
tection obtained from pooling and masking operations. As a result, huge graphs 
of the profile section and three-dimensional models of archaeological sketches 
are obtained. 

A similar but simpler approach has been proposed by Rasheed and Nordin, 
(2020). They have built a three layers feed forward backpropagation network to 
link broken pottery vases fragments with other fragments that may match. Similar 
approaches are those by Grilli et al. (2019) and Ostertag and Beurton-Aimar 
(2020). 

 
 
6. Conclusion 
 
Archaeological classification is not the only way of archaeological inference. 

In this paper we have not made any reference to interpolation – regression me-
thods are an exemple of this kind of inference models –, which are based on ab-
ductive and deductive reasoning instead of the inductive basis of classification. 
Neural networks are not the only technology for induction and supervised lear-
ning. Beyond classical statistics, other inductive algorithms are being explored 
for archaeological classification, like Rule Induction, Genetic Algorithms, Baye-
sian networks, Support Vector Machines, Random Forests, among many others. 
In some cases, those algorithms offer better results that neural networks – i.e., 
more accurate results, with less classification result when compared with prior 
knowledge. 

As discussed in this paper, neural networks, both simple and deep ones, 
have their proper role in archaeology, especially when input and output, when 
description and explanation, cannot be reduced to simple terms or discrete at-
tributes. This is specifically the case for images. If archaeology is a quintessen-
tially visual discipline (Shelley 1996; James 2015), then we need deep machine 
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learning methods to process complex and complicated visual information. Ob-
viously, complex non-visual archaeological data and explanations can also be 
processed using neural networks – material, archaeometric, spatial data.  

The suitability of neural networks is not only due to their efficiency and ‘suc-
cess’ in the task of classifying complex inputs into pre-defined classes. In a 
neural network, information and knowledge, that is, observable features and ex-
planatory concepts appear to be distributed across a very large population of 
individualized regions in a multidimensional space, rather than as sentential or 
propositional contents. Instead of having an enumerated set of responses par-
ticularizing the way in which an archaeologist can solve problems, a mathema-
tical function will transform the sensory input into an explanatory inference, in 
such a way that inputs are mapped into a potentially very large set of responses 
(Churchland, Sejnowski 1990; Browne, Sun 2001; Levine, Aparicio 2013; Barce-
ló 2009, 2015).  

The approach exposed here challenges the received conception of an expla-
nation as a basically invariant structure. The classical approach implied that the 
kind of knowledge we have when we grasp a concept such as ‘bowl’, ‘ampho-
rae’, ‘terra sigillata’, ‘burial’, ‘activity area’, ‘Bronze Age’, ‘Late Republican Pe-
riod’, etc. is knowledge of some necessary and sufficient defining conditions al-
lowing us to test for membership of the category by testing for the presence/ab-
sence of the features cited. The same is usual for any other archaeological con-
cept. This classical view, however, looks to be undermined in some important re-
spects (Barceló 2009). A connectionist depictive representation seems to be in-
herently more efficient at encoding contextual dependencies and at handling in-
teractions among constituents (Markman 2013). Additionally, for many of our 
concepts there are not any necessary and sufficient conditions to be discovered. 
Finally, our judgments of category membership (whether or not a concept is ap-
plicable to a given case) are scalar.  

The ability to represent both prototypical information and information about 
specific instances is the basis of the neurocomputing success. We can activate 
two properties, and discover which outputs are most likely to fit that scenario. 
The network will initially produce higher activations in the output units which pos-
ses any of these properties, with those sharing both properties getting the hi-
ghest activations. The units for the most widely shared properties also become 
more active than others. Thus the network not only identifies which outputs sha-
red the initial pair of properties, but what their other properties were likely to be, 
and which among those not possessing the initial pair show the best fit with those 
who did satisfy the initial pair of properties.  

This is an important property of the parallel distributed models of computa-
tion, but the importance of this property increases when we realize that the model 
can average several patterns in the same composite memory trace. Thus, one 
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network can be trained to exhibit behavior appropriate to knowledge of a number 
of distinct prototypes, such as an arrow point, a stone knife, and an axe. Intere-
stingly, if the input is indeterminate between a stone knife and a stone scraper, 
the neural network will generate an overall pattern, as if it had an idea not just of 
knives and scrapers but also on stone tools. We see then that the talent of the 
system is used to generate a typical set of properties associated with some de-
scription, even though all the system directly knows about are individuals, none 
of whom need to be a perfectly typical instantiation of the description in question 
(Barceló 2009, 2015). 

We may call this approach to archaeological reasoning category-based be-
cause explanatory elements are accessed through a process of categorization. 
It implies that the input reaching the successive layers of a neural network is sort-
ed out into discrete, distinct categories whose members somehow come to re-
semble one another more than they resemble members of other categories. We 
have already seen that the categorization (or pattern recognition) approach pro-
poses that two operations are involved. First, the system classifies an object as 
being a member of a large number of known categories according to its input 
properties. Second, this identification allows access to a large body of stored in-
formation about this type of object, including its function and various forms of ex-
pectations about its future behaviors. This two-step schema has the advantage 
that any explanatory property can be associated with any object, because the 
relation between the form of an object and the information stored about its func-
tion, history, and use can be purely arbitrary, owing to its mediation by the 
process of categorization. That means that the responses of the neural network 
to the incoming input are not dependent of any particular attribute of the input. 
Rather, the solution to the archaeological problem will make sense only when 
considered as one component in a causal chain that generates responses en-
tirely according to the probability distribution of the past significance of the same 
or related input. The answer provided by the intelligent machine exemplifies not 
the stimulus or its sources as such, but the accumulated interactions with all the 
possible sources of the same or similar stimuli in proportion to the frequency with 
which they have been experienced. 
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Abstract 
 
Although some of the now popular deep learning techniques and technologies have a rel-
atively long history (nearly 30 years), it has been in the last 5 years when these applications 
have reached mainstream Archaeology, cultural heritage and museum studies. There is a 
new conscience of data processing in Archaeology, although the nature of these data 
hardly arrives to the usual label ‘big data’, and it has opened the methodological toolbox 
at use, especially in domains like reconstruction, remote sensing, object recognition, typo-
logical analysis, and collection management and visitor studies. In this paper, the history 
and current applications of neural networks and related methods of machine learning in ar-
chaeology, cultural heritage and museum studies are investigated. The necessary theoret-
ical background on induction and learning is provided to understand the possibilities and 
limitations of computational techniques. 
Keywords: archaeology, cultural heritage, artificial intelligence, neural networks, deep 
learning. 
 
Nonostante alcune tecniche e tecnologie di deep learning abbiano una storia relativa-
mente lunga (quasi 30 anni), solo negli ultimi 5 anni queste sono state applicate più diret-
tamente all’archeologia, al patrimonio culturale e agli studi museali. C’è oggi una nuova 
coscienza del processamento dati in archeologia (anche se la natura di questi dati a sten-
to raggiunge l’usuale etichetta “big data”) che ha aperto una “scatola degli attrezzi” me-
todologica, specialmente nei campi come ricostruzione, remote sensing, object recogni-
tion, analisi tipologica, gestione delle collezioni, studi dei visitatori. In questo articolo ven-
gono esplorate la storia e le attuali applicazioni delle reti neurali e degli associati metodi 
di machine learning in archeologia e studi museali. Il necessario background teoretico 
viene fornito per comprendere le possibilità e le limitazioni delle tecniche computazionali.  
Parole chiave: archeologia, patrimonio culturale, intelligenza artificiale, reti neurali, deep 
learning.
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