


Volume 15  
2025

# pca

european journal of  
postclassical archaeologies



SAP  
Società  
Archeologica

# bca

European Journal of  
Postclassical Archaeologies

volume 15/2025

**SAP Società Archeologica s.r.l.**

Mantova 2025

## EDITORS

**Alexandra Chavarria** (chief editor)  
**Gian Pietro Brogiolo** (executive editor)

## EDITORIAL BOARD

**Paul Arthur** (Università del Salento)  
**Alicia Castillo Mena** (Universidad Complutense de Madrid)  
**Margarita Diaz-Andreu** (ICREA - Universitat de Barcelona)  
**Enrico Cirelli** (Alma Mater Studiorum - Università di Bologna)  
**José M. Martín Civantos** (Universidad de Granada)  
**Caterina Giostra** (Università Cattolica del Sacro Cuore, Milano)  
**Matthew H. Johnson** (Northwestern University of Chicago)  
**Vasco La Salvia** (Università degli Studi G. D'Annunzio di Chieti e Pescara)  
**Bastien Lefebvre** (Université Toulouse - Jean Jaurès)  
**Alberto León** (Universidad de Córdoba)  
**Tamara Lewit** (University of Melbourne)  
**Yuri Marano** (Università di Macerata)  
**Federico Marazzi** (Università degli Studi Suor Orsola Benincasa di Napoli)  
**Maurizio Marinato** (Università degli Studi di Padova)  
**Johannes Preiser-Kapeller** (Österreichische Akademie der Wissenschaften)  
**Andrew Reynolds** (University College London)  
**Mauro Rottoli** (Laboratorio di archeobiologia dei Musei Civici di Como)  
**Colin Rynne** (University College Cork)  
**Marco Valenti** (Università degli Studi di Siena)  
**Giuliano Volpe** (Università degli Studi di Foggia)

**Post-Classical Archaeologies** (PCA) is an independent, international, peer-reviewed journal devoted to the communication of post-classical research. PCA publishes a variety of manuscript types, including original research, discussions and review articles. Topics of interest include all subjects that relate to the science and practice of archaeology, particularly multidisciplinary research which use specialist methodologies, such as zooarchaeology, paleobotany, archaeometallurgy, archaeometry, spatial analysis, as well as other experimental methodologies applied to the archaeology of post-classical Europe.

Submission of a manuscript implies that the work has not been published before, that it is not under consideration for publication elsewhere and that it has been approved by all co-authors. Authors must clear reproduction rights for any photos or illustration, credited to a third party that they wish to use (including content found on the Internet). For more information about **ethics** (including plagiarism), copyright practices and guidelines please visit the website [www.postclassical.it](http://www.postclassical.it).

PCA is published once a year in May. Manuscripts should be submitted to **editor@postclassical.it** in accordance to the guidelines for contributors in the webpage <http://www.postclassical.it>.

*Post-Classical Archaeologies'* manuscript **review process** is rigorous and is intended to identify the strengths and weaknesses in each submitted manuscript, to determine which manuscripts are suitable for publication, and to work with the authors to improve their manuscript prior to publication.

This journal has the option to publish in **open access**. For more information on our open access policy please visit the website [www.postclassical.it](http://www.postclassical.it).

How to **quote**: please use "PCA" as abbreviation and "European Journal of Post-Classical Archaeologies" as full title.

**Cover image**: San Vicente del Río Almar (Alconaba, Salamanca), slate decorated with drawings (see p. 189).

"Post-Classical Archaeologies" is indexed in Scopus and classified as Q3 by the Scimago Journal Rank (2022). It was approved on 2015-05-13 according to ERIH PLUS criteria for inclusion and indexed in Carthus+2018. Classified A by ANVUR (Agenzia Nazionale di Valutazione del sistema Universitario e della Ricerca).

## DESIGN:

Paolo Vedovetto

## PUBLISHER:

SAP Società Archeologica s.r.l.

Strada Fienili 39/a, 46020 Quingentole, Mantua, Italy

[www.saplibri.it](http://www.saplibri.it)

Authorised by Mantua court no. 4/2011 of April 8, 2011

For subscription and all other information visit the website [www.postclassical.it](http://www.postclassical.it).

Volume funded by the  
University of Padova

Department of Cultural Heritage



|                                                                                                   | CONTENTS                                                                                                                                                                                                            | PAGES |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>EDITORIAL</b>                                                                                  |                                                                                                                                                                                                                     | 5     |
| <b>RESEARCH - ENVIRONMENT, HEALTH AND INEQUALITY: BIOARCHAEOLOGICAL APPROACHES</b>                |                                                                                                                                                                                                                     |       |
| <b>R. Nicoletti, E. Varotto, R. Frittitta, F.M. Galassi</b>                                       | The servile body: funerary archaeology and social stratification in Roman Sicily. The Early Imperial necropolis at Cuticchi (Assoro, Enna)                                                                          | 7     |
| <b>I. Gentile, D. Neves, V. Cecconi, A. Giordano, E. Fiorin, E. Cristiani</b>                     | Diet and health in Roman and Late Antique Italy: integrating isotopic and dental calculus evidence                                                                                                                  | 29    |
| <b>B. Casa, G. Riccomi, M. Marinato, A. Mazzucchi, F. Cantini, A. Chavarría Arnau, V. Giuffra</b> | Physiological stress, growth disruptions, and chronic respiratory disease during climatic downturn: The Late Antique Little Ice Age in Central and Northern Italy                                                   | 55    |
| <b>C. Lécuyer</b>                                                                                 | Climate change and dietary adaptation in the pre-Hispanic population of Gran Canaria, Canary Islands (Spain)                                                                                                        | 85    |
| <b>K. Đukić, V. Mikasinovic</b>                                                                   | Did females and children suffer more in 6 <sup>th</sup> -century Europe? Bioarchaeological insights from the Čik necropolis (Northern Serbia)                                                                       | 107   |
| <b>R. Durand</b>                                                                                  | Between contrasts and analogies: defining social status based on archaeological and anthropological data within the Avaricum necropolises from the 3 <sup>rd</sup> to the 5 <sup>th</sup> century (Bourges, France) | 125   |
| <b>B. Casa, I. Gentile, G. Riccomi, F. Cantini, E. Cristiani, V. Giuffra</b>                      | Dental calculus, extramasticatory tooth wear, and chronic maxillary sinusitis in individuals from San Genesio (6 <sup>th</sup> -7 <sup>th</sup> centuries CE), Tuscany, Italy                                       | 147   |

**BEYOND THE THEME**

**D. Urbina Martínez, R. Barroso Cabrera, J. Morín de Pablos** Forgotten horsemen of *Hispania*: Alan-Sarmatian legacies in the Late Roman West **179**

**S. Zocco, A. Potenza** Malvindi (Mesagne, BR): un esempio di cambio di destinazione d'uso delle terme romane tra VI e VII secolo d.C. **205**

**G.P. Brogiolo** Santa Maria in Stelle (Verona). Note stratigrafiche **225**

**M. Moderato, D. Nincheri** *Network analysis*, fondamenti teorici e applicazioni pratiche: il caso dell'Archeologia Medievale **257**

**R. D'Andrea, L. Gérardin-Macario, V. Labbas, M. Saulnier, N. Poirier** Roofing at the crossroads: timber procurement for historical roof construction at the confluence of two major waterways in Occitania (France) **277**

**PROJECT**

**P. Gelabert, A. Chavarriá Arnau** Social genomics and the roots of inequality in the Early Middle Ages: new perspectives from the GEMS project **309**

**REVIEWS**

Bartosz Kontry, *The Archaeology of War. Studies on Weapons of Barbarian Europe in the Roman and Migration Period* - by **M. Valenti**

Martina Dalceggio, *Le sepolture femminili privilegiate nella penisola italiana tra il tardo VI e il VII secolo d.C.* - by **A. Chavarriá Arnau**

Piero Gilento (ed), *Building between Eastern and Western Mediterranean Lands. Construction Processes and Transmission of Knowledge from Late Antiquity to Early Islam* - by **A. Cagnana**

Paolo de Vingo (ed), *Il riuso degli edifici termali tra tardoantico e medioevo. Nuove prospettive di analisi e di casi studio* - by **A. Chavarriá Arnau**

Aurora Cagnana, Maddalena Giordano, *Le torri di Genova. Un'indagine tra fonti scritte e archeologia* - by **A. Chavarriá Arnau**

Aurora Cagnana e Stefano Roascio (eds), *Luoghi di culto e popolamento in una valle alpina dal IV al XV secolo. Ricerche archeologiche a Illegio (UD) (2002-2012)* - by **A. Chavarriá Arnau**

Peter G. Gould, *Essential Economics for Heritage* - by **A. Chavarriá Arnau**

# Dental calculus, extramasticatory tooth wear, and chronic maxillary sinusitis in individuals from San Genesio (6<sup>th</sup>-7<sup>th</sup> centuries CE), Tuscany, Italy

## 1. Introduction

The oral cavity is central to reconstructing disease, diet, activity, and environment in archaeological human remains. Teeth and adjacent structures preserve evidence of everyday subsistence, non-masticatory activities, and chronic disease. When analysed through a biocultural framework, teeth can be used to reconstruct both cultural practices and biological responses. Recently, Radini and Nikita (2023) emphasised the need to contextualise dental calculus findings with other bioarchaeological and palaeopathological data by combining microscopic and macroscopic analyses. Building on this biocultural perspective, examining multiple oral and craniofacial indicators can provide a more nuanced understanding of past human behaviours and environments. Dental calculus reflects both dietary practices and oral ecology (González-Rabanal *et al.* 2022; Radini *et al.* 2017), extramasticatory dental wear preserves habitual behaviours (Lozano *et al.* 2017; Molnar 2008, 2011; Monaco *et al.* 2022; Sperduti *et al.* 2018; Willman 2016), and chronic maxillary sinusitis indicates chronic respiratory and dental diseases (Lee *et al.* 2024; Lin *et al.* 2024; Slavin *et al.* 2005). The combined analysis of extramasticatory dental wear and dental calculus has been undertaken by some researchers (Nava *et al.* 2021; Sperduti *et al.* 2018); however, their relationship with chronic maxillary sinusitis is a relatively new line of research, with only one case study conducted (MacKenzie *et al.* 2021, p. 122).

\* Corresponding authors: [bianca.casa@med.unipi.it](mailto:bianca.casa@med.unipi.it); [ilenia.gentile@uniroma1.it](mailto:ilenia.gentile@uniroma1.it).

<sup>1</sup> Division of Paleopathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa.

<sup>2</sup> DANTE-Diet and Ancient Technology Laboratory, Department of Odontostomatological and Maxillo-Facial Sciences, Sapienza University of Rome, Italy.

<sup>3</sup> Max Planck Institute of Geoanthropology, Jena, Germany.

<sup>4</sup> Department of Civilisations and Forms of Knowledge, University of Pisa.

### 1.1. *Dental calculus*

Dental calculus refers to deposits of mineralised dental plaque that adhere to the surface of the teeth and accumulate over time (Lieverse 1999, p. 220; MacKenzie *et al.* 2021, p. 115). Dental plaque comprises a complex group of microbiomes that can mineralise after two weeks (Lieverse 1999, p. 220; Radini, Nikita 2023, p. 4). Dental calculus can host remnants of anything that has passed through the mouth through inhalation or ingestion, including diet, oral hygiene practices, the environment, and the use of teeth as tools (Charlier *et al.* 2010; Radini *et al.* 2017, p. 71; Radini, Nikita 2023, p. 10). During the process of mineralisation, molecules and particulate matter become embedded within the mineralised matrix (MacKenzie *et al.* 2021, p. 116). Microdebris entrapped in dental calculus can include plant remains, bast fibres, phytoliths, diatoms, starch granules, cereal chaff, pollen grains, pollen, animal hairs, charcoal, fossilised bacteria, pigment particles, and fungal spores (Radini *et al.* 2017, pp. 73–74, 2019; Radini, Nikita 2023, p. 11). In addition, particulate matter, which is an airborne pollutant such as dust or smoke that ranges between 1–100 µm, can also be found in dental calculus (MacKenzie *et al.* 2021, p. 122; Radini *et al.* 2017, p. 76).

### 1.2. *Dental wear*

Dental wear occurs due to attrition, abrasion, and erosion. Repeated mastication causes pressure between opposing teeth and abrasive particles that are present in the mouth, leading to a loss of enamel and eventually dentine (Hillson 2005, p. 219). Particles may be introduced into the mouth through food, occupation, and the environment (e.g., soil and atmospheric dust) (Hillson 2005, p. 219). Tooth-on-tooth contact by neighbouring and opposing teeth causes dental attrition, leading to the development of wear facets on the occlusal surface and contact sites between teeth (Hillson 1996, p. 231). Occlusal attrition is primarily caused by mastication and is therefore influenced by diet; however, tapping, bruxism, or grinding of teeth, as well as variations in enamel thickness in different teeth, can also be contributing factors (Alt, Pichler 1998, p. 387; Hillson 1996, pp. 238, 242, 2005, p. 214). Dental abrasion is a loss of surface detail without distinct wear facets that is not caused by tooth-on-tooth contact (Hillson 1996, p. 231). Dental abrasion is a plastic deformation in the form of scratches caused by contact with foreign objects and hard particles in the mouth, such as oral hygiene tools (toothbrush, toothpaste), smoking, jewellery, and blades. (Hillson 1996, pp. 231, 250). Hard particles in fluid, such as acidic foods, cause dental erosion, which is a chemical etching that dissolves the mineral content of teeth and creates plastic deformation, indentation, and fracturing (Arnadottir *et al.* 2010; Hillson 1996, p. 250).

In addition to dental attrition, abrasion, and erosion, dental wear can also result from both intentional or unintentional processes, such as the intentional mod-

ification or mutilation of the teeth (e.g., social identity and cultural practices) (Burnett *et al.* 2023; Smith-Guzmán *et al.* 2020), unintentional modification from habitual activities (e.g., pipe smoking), and the use of teeth as tools, the so-called 'third hand' (Alt, Pichler 1998, pp. 388, 394; Hillson 2005, p. 215; Milner, Larsen 1991). Activities including the processing of food (e.g., shredding, stripping and peeling) (Irish, Turner 1987, 1997; Tanga *et al.* 2016; Watson, Haas 2017), sinew stripping (Brown, Molnar 1990), crafts (Bonfiglioli *et al.* 2004; Monaco *et al.* 2022; Tanga *et al.* 2016), leatherworking (Lous 1970; Monaco *et al.* 2022), plant fibre processing and basket making (Díaz-Navarro *et al.* 2023; Fidalgo *et al.* 2020; Larsen 1985; Lozano *et al.* 2017; Milner, Larsen 1991; Sperduti *et al.* 2018), wood shaping (Hylander 1973), occupations with high levels of exposure to dust pollution (e.g., quarrymen, mine workers) (Hickel 1989), and consistent probing such as the use of toothpicks for habitual, hygienic, and therapeutic reasons (Frayer, Russell 1987; Molnar 2008), have been found to cause inadvertent extramasticatory dental wear. However, caution is advised when interpreting behavioural activities from extramasticatory dental wear, whereby the incorporation of contextual archaeological evidence and other specialist analyses (e.g., dental calculus) is essential for developing robust inferences (Molnar 2010).

### 1.3. Chronic maxillary sinusitis

Chronic respiratory diseases result from interactions between genotype and environment (Gibson *et al.* 2013, p. 30). In archaeological human skeletal remains, chronic respiratory diseases can be identified through chronic *otitis media* (Krenz-Niedbała, Łukasik 2017), periosteal reaction on the ribs (Davies-Barrett *et al.* 2021), and through chronic maxillary sinusitis, which occurs after approximately 12 weeks of inflammation of the maxillary sinuses (Cho *et al.* 2006, p. 404; Lee *et al.* 2024). Bacterial infections and viral diseases account for the majority of cases of acute sinusitis, and to a lesser extent, fungal infections (Dudde *et al.* 2023, p. 1379), whereas rhinogenic and odontogenic causes can result in chronic maxillary sinusitis (Hershberger *et al.* 2024, p. 345). The causes of rhinogenic chronic maxillary sinusitis include, but are not limited to, viral upper respiratory tract infections and consequent bacterial infections, infectious diseases, fungi, anatomical variations, asthma, and long-term exposure to environmental conditions (Raz *et al.* 2015, p. 569; Roberts 2007, p. 795; Slavin *et al.* 2005, pp. S16, S25, S35). Odontogenic chronic maxillary sinusitis occurs secondary to dental lesions (Lin *et al.* 2024, p. 5). The risk factors for chronic maxillary sinusitis include diet and nutrition, occupational activities, health events during childhood, genetics, and the environment (natural, outdoor, and indoor) (Gibson *et al.* 2013). The primary environmental agent of chronic respiratory diseases, including chronic maxillary sinusitis, is air pollution due to natural (dust, pollen, brushfires, sea spray, and vegetation) and anthropogenic (smoke, fuel



Fig. 1. a) Map of Italy indicating the location of San Genesio; (b) Map of Tuscany indicating the location of San Genesio in relation to Pisa and Florence (Basemap 'World Imagery' sourced from Esri).

fumes, industrial activities, agriculture, and biomass combustion) sources because fine particulate matter ( $<2.5\text{ }\mu\text{m}$ ) can be inhaled deep into the respiratory tract (Daellenbach *et al.* 2020, p. 414; Kim *et al.* 2015, p. 137; Lakey *et al.* 2016, p. 1; Park *et al.* 2021, p. 2).

#### 1.4. Archaeological background: *vicus Wallari-borgo San Genesio*

Located near San Miniato (Pisa), Tuscany, central Italy, *Vicus Wallari-borgo San Genesio* is a rural archaeological site situated along the *Via Francigena* between Pisa and Florence (fig. 1) (Cantini 2010, p. 81). The site was occupied from the 3<sup>rd</sup> century BCE, and by the 6<sup>th</sup> century CE, it had taken on a military function, likely due to the Gothic Wars (Cantini *et al.* 2017, p. 251). A large necropolis was established at the site in the middle of the 6<sup>th</sup> century CE (Cantini *et al.* 2017, p. 251). From the second half of the 6<sup>th</sup> century CE, the necropolis probably served local inhabitants, as well as people who died on the road between Pisa and Florence during the Gothic Wars and the Lombard conquest, which may have included members of the armies (Cantini *et al.* 2017, pp. 251-252). The necropolis was in use until the 13<sup>th</sup> century CE, hosting over 400 inhumations (Viva *et al.* 2022, p. 39). In the present study, 13 individuals from San Genesio, dating between the middle of the 6<sup>th</sup> and 7<sup>th</sup> centuries CE, are of interest. During this time, the site expanded to include an organised village, adopted

the Lombard place name of *Vicus Wallari* in textual sources in 715 CE, and included a religious structure dedicated to San Genesio by the end of the 7<sup>th</sup> century CE (Cantini *et al.* 2017, p. 252; Viva *et al.* 2022, p. 39).

Coinciding with the occupation of the site during the 6<sup>th</sup> and 7<sup>th</sup> centuries CE, Italy underwent a series of sociocultural and political transformations (e.g., the Gothic wars, the Justinian Plague, and the Lombard conquest of Italy), which overlapped with the climatic shifts caused by the Late Antique Little Ice Age (LALIA) (Büntgen *et al.* 2016a, 2016b, 2022; Harper 2023; McCormick *et al.* 2012; Pohl 1997; Sigl *et al.* 2015). The LALIA caused an average temperature drop of -1.54°C in the northern hemisphere (Büntgen *et al.* 2022, p. 2337) and a temperature drop of -3°C in southern Italy when compared to the climatic averages of the Roman Climate Optimum (Zonneveld *et al.* 2024, pp. 3, 5). In Tuscany, the LALIA caused increased precipitation during autumn and winter, resulting in increased palaeoflood activity (Bini *et al.* 2020; Isola *et al.* 2019; Zanchetta *et al.* 2021). The timing of site use and the central location of San Genesio position it as an ideal case study for applying a multimodal approach to investigate the everyday practices and diets adopted by a group of multicultural people during a period of climatic downturn. This study aims to evaluate the relationship between extramasticatory dental wear, dental calculus, and chronic maxillary sinusitis in 13 individuals from San Genesio (mid-6<sup>th</sup> to 7<sup>th</sup> centuries CE, Tuscany, Central Italy) in relation to cultural and occupational practices, and ecological conditions (fig. 1).

## 2. Materials and methods

### 2.1. Materials

Individuals were included in the present study if they had dental calculus on their maxillary or mandibular dentition, located on either the labial/buccal, lingual, or interproximal surface, as well as supra-and subgingival. A total of 13 individuals from San Genesio dating to the 6<sup>th</sup> and 7<sup>th</sup> centuries CE presented sufficient dental calculus for sampling.

### 2.2. Biological profile

The age at death of individuals was estimated based on morphological changes to the auricular surface of the ilium (Buckberry, Chamberlain 2002) and the pubic symphysis (Brooks, Suchey 1990), as well as the stage of dental development and eruption (AlQahtani 2010). After the complete eruption of the third molar at approximately 20 years of age, an individual was classified as an adult (Hillson 2014, pp. 29, 229).

Sex was assessed primarily based on features of the pelvis, followed by the skull (Acsádi, Nemeskéri 1970; Ferembach *et al.* 1980; Klales 2018; Klales, Cole 2018), and metric measurements of the humeral and femoral head in adult individuals (Stewart 1979). Individuals were assigned to their respective estimated sex categories: male, probable male, indeterminate sex, probable female, female, and unknown sex.

### 2.3. Macroscopic dental assessment

The nomenclature system for labelling teeth was employed after Hillson (1996). Dental calculus deposits were scored on a three-scale system based on their quantity: grade one is a mild deposit (minimal deposit in a line), grade two is a moderate deposit (covering <50% of the tooth surface), and grade three is a severe deposit (covering >50% of the tooth surface) after Brothwell (1981).

Dental wear on the maxillary and mandibular occlusal surfaces was macroscopically scored according to the schema of Smith (1984). Third molars were excluded from analyses due to axial inclination (Hillson 1996, p. 238). The mandibular and maxillary dentitions were scored, and average scores of  $\geq 0.5$  were rounded up. Scores of 1 and 2 indicated little to no wear, scores of 3 and 4 indicated moderate wear, scores of 5 and 6 indicated heavy wear, and scores of 7 and 8 indicated extreme wear.

Five parameters were considered for assessing extramasticatory dental wear: lingual surface attrition of the maxillary anterior teeth (LSAMAT), excessive occlusal load, chipping, grooving, and notching.

LSAMAT refers to progressive extramasticatory dental wear of the lingual surface of the anterior teeth of the maxilla without lingual or labial occlusal wear of the adjacent mandibular teeth (Turner, Machado 1983, p. 126). LSAMAT could only be assessed in individuals with maxillary and mandibular anterior dentition.

Excessive occlusal load was analysed on premolar and molar teeth, of which the occlusal surface presents little to no enamel, and often this wear is oblique, according to Molnar (2008, p. 424).

Antemortem chipping of the dental enamel with or without dentine, located on the labial, buccal, lingual, or interproximal edges of the teeth, was recorded as per the three-grade scale of Bonfiglioli *et al.* (2004, p. 449). Grade one was a crack or enamel flake of  $<0.5$  mm, grade two was an irregular square lesion of  $<1$  mm, and grade three was a crack that involved both the enamel and dentine and was greater than 1 mm (Bonfiglioli *et al.* 2004, p. 449).

Grooving refers to tubular troughs that occur on the occlusal surface of the dentition and run in either a mesiodistal or linguolabial/buccal direction, and are assessed using light microscopy (stereo zoom microscope MAHR SM 150, magnification 7X-45X) (Larsen 1985, p. 394; Monaco *et al.* 2022, p. 3). Interproximal grooving typically occurs parallel to the cementoenamel junction (CEJ) of the

teeth and can extend into the crown and root in a linguolabial direction (Bonfiglioli *et al.* 2004, p. 449).

Notching is defined as an indentation on the occlusal and incisal edge of a tooth, which can extend across the entire surface, is broader than deep, has a smooth and polished appearance through enamel and dentine, runs in a vestibulo-lingual direction, and is oriented transversely or perpendicular to the mesiodistal direction (Bonfiglioli *et al.* 2004, p. 449). The three-grade scale of Bonfiglioli *et al.* (2004, p. 449) was used to assess notching: grade one is a slight indentation exclusively in enamel, grade two is an evident indentation that is wider and deeper with polished dentine, and grade three is an equally deep and wide depression with heavily polished dentine.

In addition to extramasticatory dental wear, antemortem tooth loss (AMTL) was scored as present or absent. Dental diseases, including dental caries (Doro Garetto *et al.* 1991) and periapical voids (abscesses, granulomas, and cysts) (Ogden 2008), were also recorded. Periodontal disease was scored according to the system of Ogden (2008), whereby healthy alveolus with no disease is scored as one when the alveolar margin meets teeth at a knife-edged occlude angle; mild periodontal disease is scored as two when the alveolar margin is blunt and flat-topped with a slightly raised rim; moderate periodontitis is scored as three, the alveolar margin is rounded and porous, with a trough of 2–4 mm depth; and severe periodontal disease is scored as four, whereby the alveolar margin is highly raised and porous, with an irregular trough and/or funnel >5 mm depth.

#### *2.4. Dental calculus sampling and analyses*

Dental calculus sampling, extraction, and decontamination were performed following published protocols (Fiorin, Cristiani 2023; Radini *et al.* 2017; Sabin, Fellows Yates 2020), with some modifications. The initial sampling of calculus from the teeth was conducted at the Division of Paleopathology, University of Pisa, in a thoroughly sanitised space, following the recommendations described by Velsko *et al.* (2017). The sampling preference was for supragingival dental calculus on the anterior teeth, on either the labial, lingual, or interproximal surfaces; deposits were selected based on their size. Calculus ranging from 0.003–0.038 grams was removed using a sterile scalpel on aluminium foil, transferred into sterile 1.5 mL Eppendorf tubes, and then weighed using a KERN EWJ 300-3H microbalance. The surfaces, tools, and nitrite gloves were sterilised using ethanol between each sample. The origin, colour, and weight of the calculus samples were recorded, and the samples were transferred to the DANTE Laboratory of Sapienza University of Rome for specialist analyses.

Concerning the dental calculus analyses, all procedures were performed in dedicated clean areas that were physically separated from spaces used for modern botanical research under strict environmental monitoring at the DANTE

Laboratory of Sapienza University of Rome. Cleaning took place on specific days, separate from the experimental work, and only after thorough sanitisation of all surfaces to prevent contamination. Before each analysis, the bench surfaces were cleaned with soap and ethanol, covered with film foil, and clean starch-free nitrile gloves were worn at all times. Before these steps, the dental calculus samples were weighed using an Ohaus Explorer® E11140 precision balance (capacity: 0.0001 g). The dental calculus analysed consisted of larger flakes and small quantities of tiny fragments.

Decontamination, that is, the removal of any soil residues and other contaminants from the sample, was carried out under a stereomicroscope (ZEISS Discovery V20, 10X-170X) on a Petri dish previously washed and sterilised with soap, alcohol, and boiling water. The operation was performed using brushes with synthetic bristles, a sterile surgical blade made of carbon steel, or an acupuncture needle sterilised with ethylene oxide, combined with a small amount of hydrochloric acid (1.5 M HCl) and ultrapure water (H<sub>2</sub>O Merck Millipore). After cleaning, the sample was subjected to three washing cycles in a Thermo Fisher microcentrifuge and finally dried in a Narbetherm muffle furnace (30°-1300°C) set at 40°C. Subsequently, the dental calculus was dissolved in hydrochloric acid (1.5 M HCl), and each step was followed by agitation on a rolling mixer for the tubes. Once completely dissolved, the vial contents were mounted on rectangular glass slides using a 50:50 solution of glycerol and ultrapure water and covered with a square glass coverslip.

Microdebris embedded in the calculus matrix were analysed using a transmitted Zeiss Imager2 cross-polarised microscope with magnifications ranging from 100X to 630X. Furthermore, control samples from clean working tables and dust traps were collected and analysed as references to monitor and exclude potential modern contamination. This practice is routinely carried out in the DANTE Laboratory, even during periods when no archaeological analysis is conducted, to better understand the flow of contamination over seasons. We did not retrieve any debris morphologically similar to any of the remains found in the environmental control samples. Only a few non-diagnostic starch granules were observed in the laboratory dust samples.

The micro-remains observed in the analysed samples were classified according to their nature and morphological characteristics as plant remains (e.g., starch granules, plant fibres, wood, and charcoal), fungal spores, or animal remains (e.g., fish scales). Where possible, these categories were further subdivided into smaller subgroups for taxonomic identification purposes. To identify archaeological starch granules, a modern reference collection of over 300 plants native to the Mediterranean region and Europe was used in conjunction with published literature. The other micro-residues (plant fibres, fish remains, fungi, and wood) were identified by comparison with an experimental reference collection stored in the DANTE laboratory. The microcharcoal particles were cate-

gorised based on previous research on dental calculus (Hardy *et al.* 2016; MacKenzie *et al.* 2021).

### 2.5. Chronic maxillary sinusitis

Chronic maxillary sinusitis could be assessed in adult individuals with at least one right or left maxillary sinus of >50% preservation, including the sinus floor, and either the medial or lateral wall (Riccomi *et al.* 2021, p. 42). The osseous features of chronic maxillary sinusitis were assessed macroscopically using the criteria of Boocock *et al.* (1995) and Merrett and Pfeiffer (2000), including spicules, remodelled spicules, pitting, and lobules. Thickening of the sinus walls followed the definition of Casa *et al.* (2025). As chronic maxillary sinusitis of rhinogenic and odontogenic origins can co-occur, cases of chronic maxillary sinusitis were not differentiated by apparent aetiology in the present study.

## 3. Results

Dental wear and calculus were analysed in seven males, five females, and one individual of indeterminate sex (tab. 1). Deposits of dental calculus were most frequently mild and affected both the maxillary and mandibular dentition (fig. 2; tab. 1). Moderate deposits of dental calculus occurred more frequently on the mandibular dentition (fig. 2), although one severe case was observed on the maxillary dentition (tab. 1).

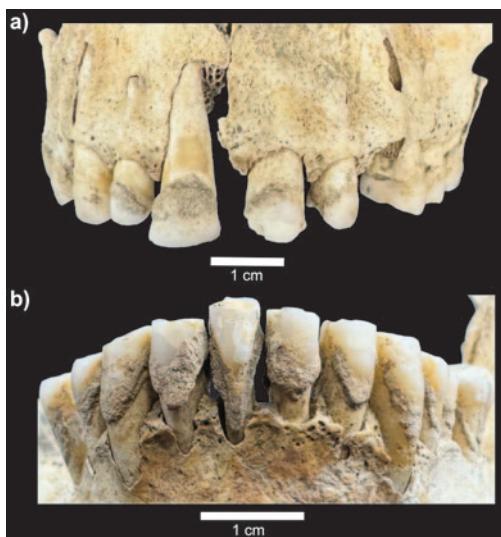



Fig. 2. Moderate deposits of dental calculus on the labial surface of the (a) maxillary and (b) mandibular dentition of US 13022.

| Context and individual ID | Age at death          | Sex | Dental calculus deposit | Dental diseases |                                                                                                             | Occlusal attrition score |    | Extramasticatory dental wear |    | AMTL |    | Teeth |    |
|---------------------------|-----------------------|-----|-------------------------|-----------------|-------------------------------------------------------------------------------------------------------------|--------------------------|----|------------------------------|----|------|----|-------|----|
|                           |                       |     |                         | Mx              | Md                                                                                                          | Mx                       | Md | Mx                           | Md | Mx   | Md | Mx    | Md |
| US 26159<br>SK297         | 37.86±<br>13.08 yrs   | M?  | 1                       | 1               | Mild periodontal disease; superficial CEJ dental caries                                                     | 3                        | 3  | X                            | 0  | 0    | 0  | 0     | 0  |
| US 32441<br>SK143         | 47±2.82<br>yrs        | M   | 1                       | 1               | Mild periodontal disease; superficial crown and destructive CEJ and root dental caries                      | 2                        | 2  | 0                            | 0  | 0    | 0  | 0     | 0  |
| US 21083                  | 51.41±<br>14.47 yrs   | F   | 1                       | 1               | Mild periodontal disease; superficial and perforating crown and CEJ dental caries                           | 6                        | 6  | X                            | X  | X    | 0  | 0     | 0  |
| US 13020                  | 45.6±<br>10.4 yrs     | M?  | cba                     | 1               | Mild periodontal disease; destructive crown, CEJ and root dental caries                                     | NR                       | 6  | NR                           | X  | 0    | 0  | 0     | 0  |
| US 13022                  | 51.41±<br>14.47 yrs   | F   | 1                       | 2               | Mild periodontal disease; destructive crown, CEJ and root dental caries; periapical abscess                 | 5                        | 4  | X                            | X  | X    | 0  | 0     | 0  |
| US 32564<br>SK186         | Adult                 | 1   | 1                       | 1               | Mild periodontal disease; superficial, dentine, and destructive crown and CEJ dental caries                 | 6                        | 3  | X                            | 0  | X    | 0  | 0     | 0  |
| US 3178<br>SK206          | 15.5 yrs              | F?  | 1                       | 1               | Superficial crown dental caries                                                                             | 2                        | 2  | 0                            | 0  | X    | 0  | 0     | 0  |
| US 32730<br>SK230         | Adult                 | M?  | 1                       | 2               | Superficial crown dental caries                                                                             | 5                        | 4  | X                            | 0  | X    | 0  | 0     | 0  |
| US 2100<br>SK31           | 37.86±<br>13.08 yrs   | F   | 1                       | 2               | Dentine and destructive crown and CEJ dental caries                                                         | 2                        | 1  | NR                           | 0  | 0    | X  | 0     | 0  |
| US 2103<br>SK32           | 51.41±<br>14.47 yrs   | F   | 1                       | 2               | Mild periodontal disease; dentine crown, and destructive crown, CEJ and root dental caries                  | 5                        | 3  | X                            | 0  | 0    | X  | 0     | 0  |
| US 32505<br>SK167         | 45.6±<br>10.4 yrs     | M?  | 3                       | 2               | Dentine crown and CEJ, and superficial root dental caries, periapical abscess                               | 3                        | 2  | NR                           | 0  | 0    | 0  | 0     | 0  |
| US 26078<br>SK60          | 37.86±<br>13.08 yrs   | M   | 1                       | 1               | Mild periodontal disease; superficial CEJ and destructive crown and CEJ dental caries; periapical abscesses | 5                        | 3  | X                            | 0  | X    | 0  | 0     | 0  |
| US 11012<br>SK20          | 51.41±<br>14.47 years | M   | 1                       | 0               | Dentine crown and CEJ dental caries                                                                         | NR                       | 5  | NR                           | X  | X    | 0  | 0     | 0  |

Tab. 1 (previous page). Summary of dental diseases, occlusal dental wear, and extramasticatory dental wear in individuals sampled for dental calculus.

NR=not recordable; N/A=not applicable; Mx = maxilla; Md = mandible; CEJ=cementoenamel junction; L=left; R=right; I=incisor; C=canine; PM=premolar; M=molar.

### 3.1. Macroscopic dental assessment

Assessment of dental wear on the occlusal surface revealed three individuals with light wear, one with light-moderate wear, one with moderate wear, five with moderate-heavy wear, and three with heavy wear (tab. 1). Seven individuals had a discrepancy between the attrition scores of the maxillary and mandibular dentition, with higher average scores for the maxillary dentition (tab. 1). Notably, one individual (US 26159 SK297) displayed irregular wear facets on the maxillary and mandibular molars, which were characterised by a rough texture (fig. 3).

LSAMAT dental wear was present in seven individuals, comprising three males, three females, and one individual of indeterminate sex (tab. 1, fig. 4). Excessive occlusal load of the molars and premolars occurred in seven individuals, comprising four males, two females, and one individual of indeterminate sex (tab. 1). Six individuals presented excessive occlusal load on the maxillary teeth and four on the mandibular dentitions (tab. 1). One individual (US 13020) presented excessive oblique wear of the mandibular anterior dentition (fig. 5).

Antemortem chipping was found in 11 individuals; grade one chipping was present in 11 individuals, grade two in five individuals, and no individuals exhibited grade three (tab. 1). Grooves were not observed in any of the individuals in

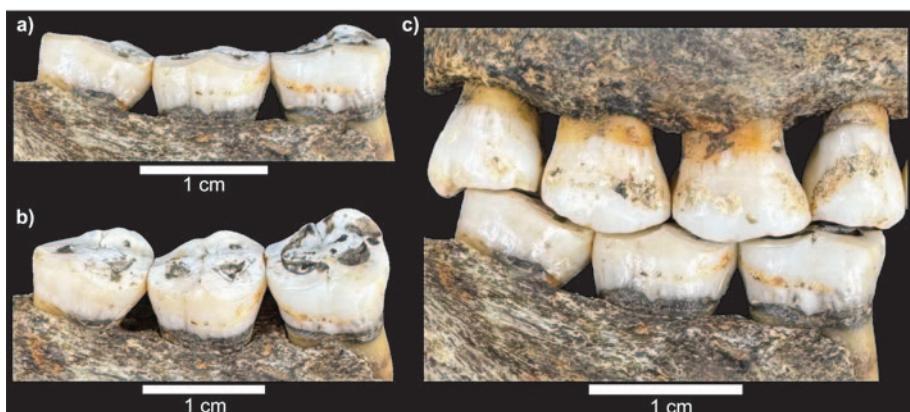



Fig. 3. US 26159 SK297 (a) Lateral view and (b) superolateral view of right mandibular molars with irregular wear facets and rough texture, (c) Occlusion of maxillary and mandibular dentition.

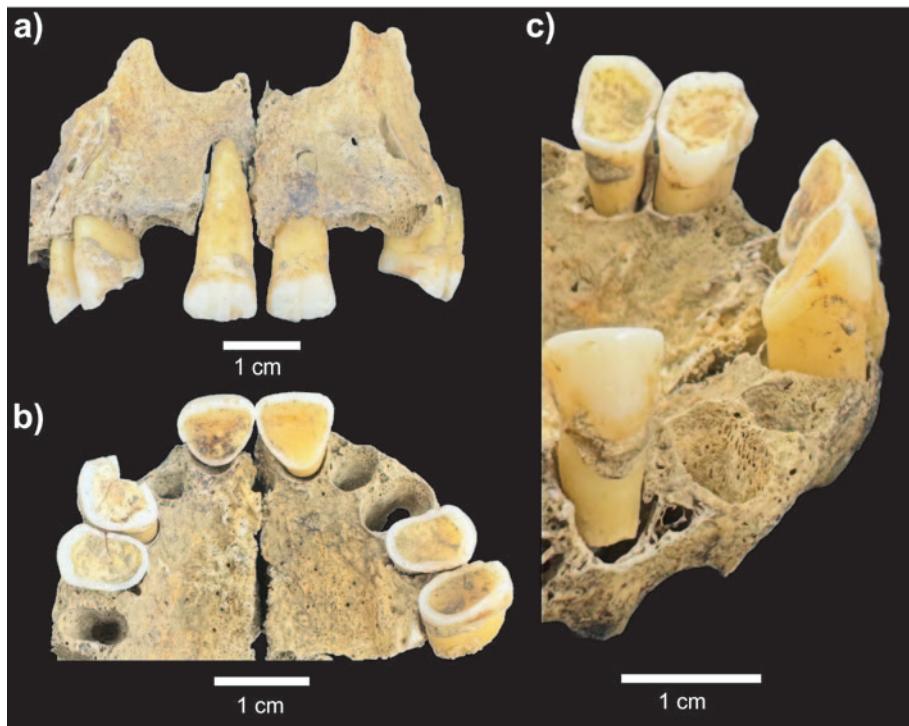



Fig. 4. US 32564 SK186 maxillary dentition exhibiting LSAMAT dental wear pattern on anterior teeth (a) labial view, (b) occlusal view, and (c) occlusal view of the left side.

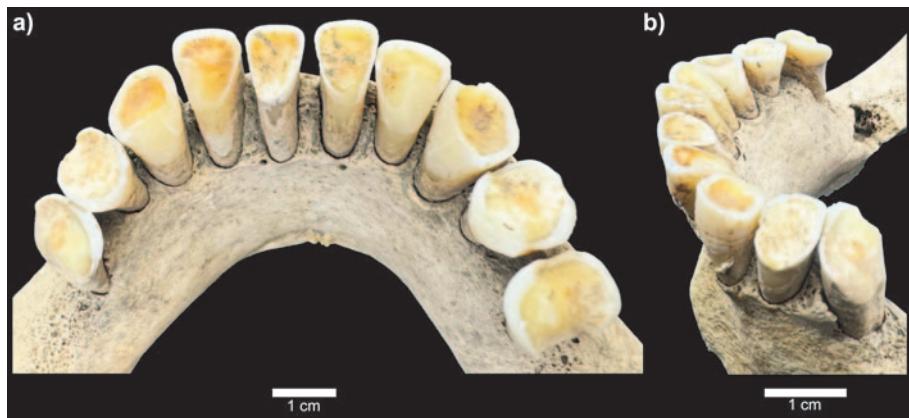



Fig. 5. US 13020 mandibular dentition with oblique wear pattern on anterior dentition (a) occlusal view and (b) occlusal view of left side.

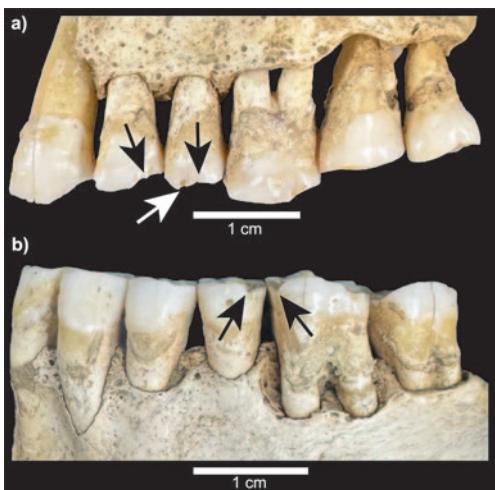



Fig. 6. Individual US 21083 (a) left maxilla with notching at the occlusal edge of P3 and P4 (black arrows) and chipping on the P4 incisal edge (white arrow); (b) left side of the mandible with notching at the occlusal edge of the interproximal surface between P4 and M1 (black arrows).

the present study. One individual, US 21083, exhibited notching of the edge of the occlusal surface of the left P3 and P4 (fig. 6a), as well as in the mandibular dentition, squared notches crossing the interproximal surface between the left P4 and M1, and between M1 and M2 (fig. 6b).

AMTL primarily affected molar teeth and was found in 11 individuals, including four maxillary and 10 mandibular dentitions (tab. 1). The frequency of AMTL per observable dentition and alveoli ranged between 7.7%-53.8% of the observable maxillary dentition and between 6.66%-60% of the mandibular dentition (tab. 1). Eight individuals exhibited mild periodontal disease, while lesions of dental caries occurred in 12 individuals, and three individuals had periapical abscesses (tab. 1).

### 3.2 Dental calculus

Table 2 presents the archaeological dental calculus that was preserved and identified in the analysed samples (fig. 7).

#### *Starch granules*

Starch granules were recovered from five samples. Based on morphology, distribution, appearance, and other features observable under cross-polarised transmitted light, two distinct morphotypes were identified in the samples analysed in this study. To avoid misinterpretation, granules smaller than 5  $\mu\text{m}$  (transient starches) were excluded, as they are not diagnostic (Haslam 2004). Morphotype I starch granules belong to the Triticeae tribe (subfamily Pooideae, family Poaceae), whereas Morphotype II starch granules are attributable to the Paniceae tribe (subfamily Panicoideae, family Poaceae). The Paniceae and Triticeae

| Context and individual ID | Age at death       | Sex | Type I<br>Triticeae | Type II<br>Panicoideae | Fish | Wood | Indetermi-nate | Other               |
|---------------------------|--------------------|-----|---------------------|------------------------|------|------|----------------|---------------------|
| US 26159<br>SK297         | 37.86±13.08<br>yrs | M?  |                     |                        |      |      |                | 3FI                 |
| US 32441<br>SK143         | 47±2.82 yrs        | M   | 1                   |                        |      |      | 1              | AN; CH; 6FI;<br>4FU |
| US 21083                  | 51.41±14.47<br>yrs | F   | 1                   |                        |      |      | 1              | FI                  |
| US 13020                  | 45.6±10.4<br>yrs   | M?  | 1                   |                        | 1    | 1    |                | FI                  |
| US 13022                  | 51.41±14.47<br>yrs | F   |                     |                        |      | 1    |                | FI                  |
| US 32564<br>SK186         | Adult              | I   |                     | 1                      |      |      |                | CH                  |
| US 3178<br>SK206          | 15.5 yrs           | F?  |                     |                        |      |      |                |                     |
| US 32730<br>SK230         | Adult              | M?  |                     |                        |      |      |                | BA; 2CH;<br>2FI; AN |
| US 2100<br>SK31           | 37.86±13.08<br>yrs | F   |                     | 1                      |      |      |                | CH                  |
| US 2103<br>SK32           | 51.41±14.47<br>yrs | F   |                     |                        | 1    | 2    |                |                     |
| US 32505<br>SK167         | 45.6±10.4<br>yrs   | M?  |                     |                        |      |      |                | FI                  |
| US 26078<br>SK60          | 37.86±13.08<br>yrs | M   |                     |                        |      | 4    |                | 2CH; FI             |
| US 11012<br>SK20          | 51.41±14.47<br>yrs | M   |                     |                        |      | 2    |                | 3FI; FU             |

Tab. 2. Details of the plant and animal micro-debris found in the archaeological dental calculus sample from San Genesio (Ch=Charcoal; FI=Fibres; FU=Fungi; AN=Animal Tissue; BA=Bacteria).

tribes both belong to the Poaceae (Gramineae) family, which comprises flowering plants commonly known as cereals, as well as many other herbaceous species. The Triticeae tribe, within this large family, includes cereals such as wheat (*Triticum*), barley (*Hordeum*), and rye (*Secale*), which are characterised by their particular shapes, sizes, and distribution of starch granules. In contrast, the Paniceae tribe includes species such as common millet (*Panicum*) and millets of the genus *Setaria*, which are typical small-grained cereal species. Although these groups differ in starch morphology and taxonomy, they are closely related within the same botanical family (Torrence, Barton 2006).

*Morphotype I.* Starch granules of this type were found in three individuals: US 32441 SK143, US 21083, and US 13020 (fig. 7a). Optical microscopy observations revealed that the starch granules were predominantly round or sub-oval in two dimensions and lenticular in three dimensions. They exhibited a characteristic bimodal size distribution, comprising large lenticular A-type granules and numerous small spherical B-type granules with smooth, regular contours. The granules occur as single granules (US 21083, [fig. 7a]) or loosely clustered (US

32441 SK143 [fig. 7d]), with A-type granules typically  $>20\text{ }\mu\text{m}$  and B-type granules typically  $<10\text{ }\mu\text{m}$ . In A-type granules, the hilum is central to slightly eccentric, and the granules show a typical extinction cross in polarised light. Growth lamellae may be visible in the larger A-type granules, whereas B-type granules are generally featureless at this scale. This description allows the identification of diagnostic features that are useful for taxonomic classification, thanks to the granules' size, shape and morphology (Geera *et al.* 2006; Henry *et al.* 2011; Henry, Piperno 2008; Stoddard 1999; Yang, Perry 2013). These first-type starches are consistent with the Triticeae tribe.

*Morphotype II.* This type of starch granule was identified in two individuals (US 32564 SK186 and US 2100 SK31 [fig. 7b]). It exhibits specific characteristics, including a polyhedral shape, a central hilum, a symmetrical extinction cross, and dimensions ranging from 16 to 21  $\mu\text{m}$ . Its slightly larger-than-average dimensions (typically 3–15  $\mu\text{m}$ ) could result from cooking or processing, which may cause swelling. These diagnostic characteristics are typical of the Paniceae tribe, and particularly the small-grained cereals of the Panicoideae subfamily, including several domesticated millet species (Henry *et al.* 2009, 2011). The morphology and size of the granules in our modern reference collection are consistent with *Setaria italica*, though there is some overlap with closely related species, such as *Panicum miliaceum* and wild *Setaria* spp. This necessitates caution in species-level identification, especially when granules are poorly preserved or few in number, as in this study.

#### *Unidentified starch*

One unidentified starch with a circular shape was observed in sample US21083. No visible lamellae were present, and the hilum was centric. Under polarised light, the extinction cross was clearly defined with four arms. Given these features, this starch morphology could occur in multiple plant species, and its taxonomic attribution therefore remains indeterminate.

#### *Fungi*

Microscopic examination of dental calculus revealed several fungal structures, including spores, dispersed within the matrix of two individuals (US 32441 SK143 and US 11012 SK20). However, the morphological characteristics were partially obscured by diagenetic alteration and wall fragmentation, which prevented the observation of diagnostic features such as ornamentation, wall thickness, and germination structures (Hardy *et al.* 2016; Radini *et al.* 2017). The state of preservation appears to have been influenced by post-burial depositional conditions and the oral environment, including pH fluctuations during tatar formation. Consequently, it was not possible to make a reliable taxonomic attribution.

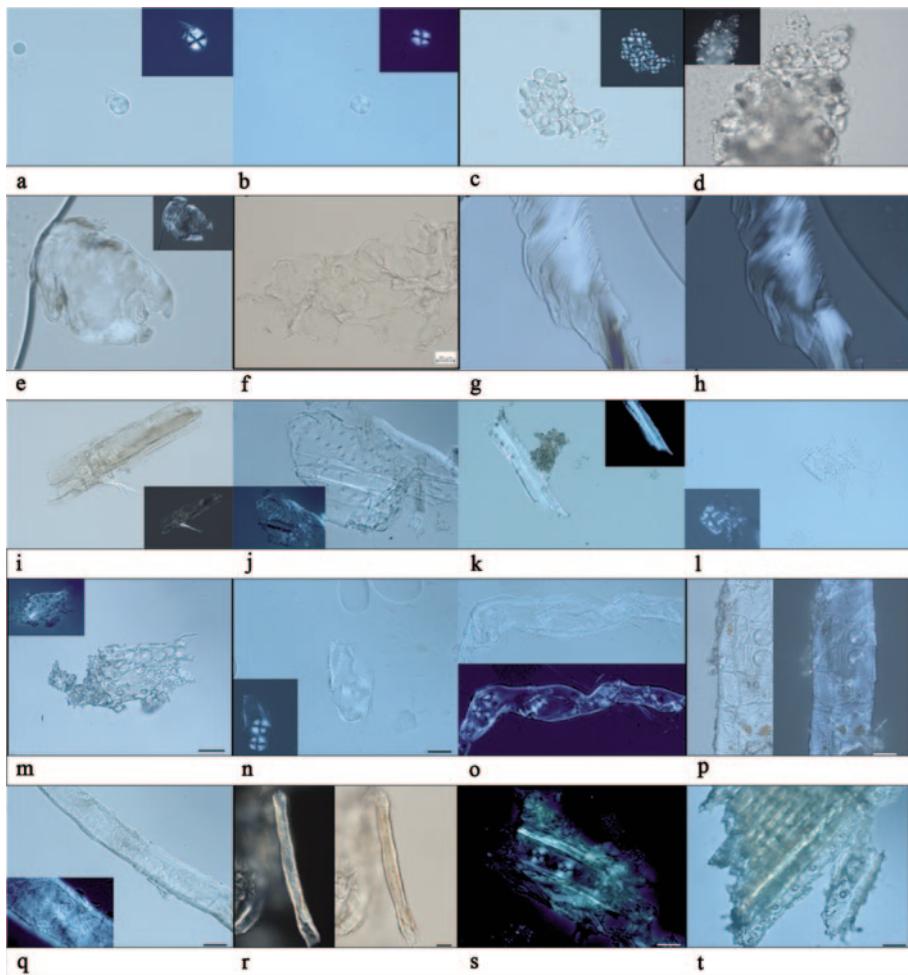



Fig. 7. Archaeological micro-remains were identified in individuals from the San Genesio site together with the experimental reference collection (black-framed photos). (a) Starch granule of *Triticum* from US 21083; (b) Starch granule of *Setaria* from US 2100 SK31; (c) Experimental starch grains of *Setaria italica*; (d) Starch granule of *Triticum* from US 32441 SK143; (e) Fish scale from US 13020; (f) Experimental ground fish scale; (g) Fish scale from US 2103 SK32; (h) Fish scale from US 2103 SK32 (polarised light); (i) Wood micro-remains from US 13022; (j) Oak wood from US 11012 SK20; (k) Plant tissue from US 11012 SK20; (l) Willow wood from US 2103 SK32; (m) Experimental oak wood (*Quercus* spp.) fragment under transmitted light microscopy, showing large vessels and associated tissue organisation typical of hardwood anatomy. Scale bar: 20 µm; (n) Apple wood from US 2103 SK32; (o) Apple wood from US 2103 SK32; (p) Experimental apple wood fragment under transmitted light microscopy, showing vessels and parenchyma typical of hardwood anatomy. Scale bar: 20 µm; (q) Willow wood from US 26078 SK60; (r) Experimental longitudinal view of a fibre from apple wood (*Malus domestica*) under transmitted light microscopy. Polarised light (left) and brightfield (right) reveal thickened cell walls characteristic of hardwood fibres. Scale bar: 20 µm; (s) Pine wood from US 2103 SK32; (t) Experimental pine wood (*Pinus* spp.) fragment under transmitted light microscopy, showing aligned tracheids and characteristic softwood structure. Scale bar: 20 µm.

### Plant fibres

Among the plant micro-remains, some fibres were very long and, in some cases, were still embedded in dental calculus. Some of these fibres have specific characteristics that allow identification under polarised light. However, most of the fibres present in the tartar lacked sufficient diagnostic characteristics for reliable taxonomic identification. Among those that could be described, flax (*Linum* sp.; US 32441 SK143 and US 11012 SK20) is characterised by a narrow lumen and an S-pattern of cellulose microfibrils, whereas hemp (*Cannabis* sp.; US 13020, US 32441 SK143 and US 26159 SK297) shows a narrow lumen and a Z-pattern of cellulose microfibrils (Lukesova, Holst 2024). Some fibres in the analysed samples were recognised as compatible with flax and hemp.

### Wood

In dental calculus, wood micro-remains recovered from the site, several of which showed clear signs of anthropic modification, were identified. This identification was based on a detailed microscopic analysis, including the observation of cell structure and arrangement, the presence of tracheids or vessels, and the type of pitting (simple or bordered pits) (Pallardy 2008; Wheeler *et al.* 2007). These analyses suggest that the wood fragments mostly derive from *Salix* spp. (willow wood, US 2103 Sk32 [fig. 7i] and US 26078 [fig. 7q]), *Malus* spp. (apple wood, US 2103 SK32 [figs. 7n-o]), *Quercus* spp. (oak wood, US 11012 SK20 [fig. 7j]) and *Pinus* spp. (pine wood, US 2103 SK32 [fig. 7s]). These taxa are all compatible with regional vegetation and palaeoenvironmental reconstructions (Santeramo 2014, p. 65). However, it should be noted that the microscopic identification of such small wood fragments rarely allows for precise taxonomic classification. Therefore, the results must be regarded as preliminary and require confirmation through additional analyses.

### Fish scale

Two fragments of mineralised animal tissue were recovered from dental calculus matrix (US 13020 [fig. 7e] and US 2103 SK32 [figs. 7g-h]) (Cristiani *et al.* 2018). Under 400X magnification, the fragments displayed a compact, translucent structure with a smooth yet subtly contoured external surface. Fine curvatures and micro-reliefs are visible, which, based on experimental comparison with Chondrichthyes (cartilaginous fish) and Osteichthyes (bony fish) scales, may correspond to the ridges or growth rings characteristic of fish body scales. The fragments showed a dense, birefringent appearance under cross-polarised light, consistent with mineralised dermal tissue, suggesting preservation of the original scale microstructure despite the small size of the fragment (Sabbah *et al.* 2021; Zylberberg *et al.* 1988). Given the observed morphology and structural features, the most plausible interpretation is an attribution to Osteichthyes, although caution is warranted due to the fragmentary nature.

#### *Charcoal remains*

Charcoal remains were dark in colour and had angular edges, displaying no birefringence when observed in transmitted polarised light and were found in five individuals (US 32441 SK143, US 32564 SK206, US 32730 SK230, US 2100 SK31, US 26078 SK60).

#### *Animal tissue*

The animal tissue was found inside the dental calculus (US 32441 SK143, US 32730 SK230). However, their morphological and structural characteristics did not permit a precise taxonomic classification. These micro-remains have a fibrous consistency and a lamellar structure that is reminiscent of dermal or cutaneous tissues (e.g. skin or animal membranes) (Linossier *et al.* 1996). However, their state of preservation and the absence of diagnostic markers mean that it is impossible to determine their origin with certainty.

#### *Bacteria*

Aggregates of bacteria were observed in the calcified matrix of dental calculus (US 32730 SK230). In several cases, these aggregates were microcolonies whose morphology was consistent with that of the bacteria present in the oral microbiota (Saini *et al.* 2011): they were either spherical or rod-shaped. While it was possible to recognise the general morphology, taphonomic alterations and preservation limitations prevented further characterisation at species or functional group level.

### *3.3 Chronic maxillary sinusitis*

A total of eight individuals out of 12 had at least one maxillary sinus of >50% completion preserved for assessment of chronic maxillary sinusitis. Two females and one male exhibited chronic maxillary sinusitis (fig. 8).

### *3.4. Extramasticatory dental wear, dental calculus, and chronic maxillary sinusitis*

Seven of the nine individuals with extramasticatory dental wear had fibrous inclusions in their dental calculus. Among them, one individual (US 21083) exhibited LSAMAT, excessive occlusal load, chipping, and notching, while another (US 13022) showed LSAMAT, excessive occlusal load, and chipping, in combination with chronic maxillary sinusitis (tabs. 1, 3). Five individuals with wood inclusions in dental calculus coincided with extramasticatory dental wear (tab. 3). Charcoal remnants were found in the dental calculus of four individuals: three of these had extramasticatory dental wear, and none presented chronic maxillary sinusitis (tab. 3).

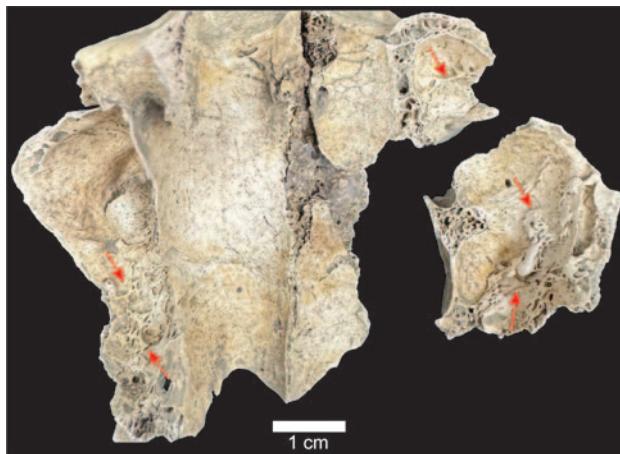



Fig. 8. Chronic maxillary sinusitis in individual US 13022; osseous bone changes include spicules, remodelled spicules and thickening of the sinus walls.

| Context and individual ID | Age at death    | Sex | Extramasticatory dental wear | Dental calculus inclusions                     | Chronic maxillary sinusitis |
|---------------------------|-----------------|-----|------------------------------|------------------------------------------------|-----------------------------|
| US 26159 SK297            | 37.86±13.08 yrs | M?  | Present                      | Fibres                                         | Absent                      |
| US 32441 SK143            | 47±2.82 yrs     | M   | Absent                       | Animal tissue, charcoal, fibres, fungi, starch | Present                     |
| US 21083                  | 51.41±14.47 yrs | F   | Present                      | Fibres, starch                                 | Present                     |
| US 13020                  | 45.6±10.4 yrs   | M?  | Present                      | Fibres, starch, fish, wood                     | NR                          |
| US 13022                  | 51.41±14.47 yrs | F   | Present                      | Fibres, wood                                   | Present                     |
| US 32564 SK186            | Adult           | I   | Present                      | Charcoal, starch                               | Absent                      |
| US 3178 SK206             | 15.5 yrs        | F?  | Absent                       | No data                                        | N/A                         |
| US 32730 SK230            | Adult           | M?  | Present                      | Charcoal, fibres, animal tissue                | NR                          |
| US 2100 SK31              | 37.86±13.08 yrs | F   | Absent                       | Charcoal, starch                               | Absent                      |
| US 2103 SK32              | 51.41±14.47 yrs | F   | Present                      | Fish, wood                                     | Absent                      |
| US 32505 SK167            | 45.6±10.4 yrs   | M?  | Absent                       | Fibres                                         | NR                          |
| US 26078 SK60             | 37.86±13.08 yrs | M   | Present                      | Fibres, charcoal, wood                         | Absent                      |
| US 11012 SK20             | 51.41±14.47 yrs | M   | Present                      | Fibres, fungi, wood                            | NR                          |

Tab. 3. Summary of extramasticatory dental wear, dental calculus inclusions, and chronic maxillary sinusitis (NR=not recordable; N/A=not applicable).

#### 4. Discussion

Thirteen individuals from San Genesio, dating to the second half of the 6<sup>th</sup> and 7<sup>th</sup> centuries CE, had preserved dental calculus for sampling and analysis. Among them, nine individuals exhibited extramasticatory dental wear, and three presented osseous changes consistent with chronic maxillary sinusitis. The majority of individuals presented dental calculus deposits of mild quantity, though five individuals presented moderate deposits, and one individual presented a severe deposit. The dental attrition scores ranged from light to heavy wear, which were largely age-related, and more attrition occurred on the maxillary dentition compared to the mandibular teeth. The LSAMAT dental wear pattern was

present in roughly half of the observable individuals, and notably, one anomalous individual had an oblique wear pattern of the mandibular anterior dentition, although the maxillary dentition could not be observed. Almost all individuals had antemortem chipping of the teeth, with mild chipping in 11 and moderate chipping in five individuals. No individuals had grooving; however, one individual presented notching of the premolars and molars. Concerning oral pathologies, the majority of individuals exhibited AMTL, which primarily affected the molar teeth, as well as dental caries and mild periodontal disease, while a few individuals had periapical abscesses. Dental calculus inclusions consisted of wheat and barley starch grains, accompanied by plant fibres, microfragments of wood, charcoal and fungal spores. Dental calculus inclusions of plant fibres, wood, and charcoal coincided with the occurrence of extramasticatory dental wear. Notably, dental calculus inclusions of plant fibres coincided with the occurrence of extramasticatory dental wear (LSAMAT, excessive occlusal load, chipping, and notching) and chronic sinusitis in two individuals, and in one case, dental calculus included animal tissue, charcoal, fibres, fungi, and starch, and the individual did not have extramasticatory dental wear but did have chronic maxillary sinusitis. There is a lack of directly comparative data for the present study, with one study evaluating dental calculus and activity-induced dental modifications from the Eneolithic to early Bronze Age site of Grigignano d'Aversa, Campania, southern Italy (Sperduti *et al.* 2018). Only one other study has evaluated dental calculus in combination with chronic maxillary sinusitis (MacKenzie *et al.* 2021).

During the 6<sup>th</sup> and 7<sup>th</sup> centuries CE in Italy, there was a shift in subsistence practices from crop-centred toward local systems, and the emergence of an agro-sylvan pastoral economy, which, in addition to C<sub>3</sub> plants, increasingly incorporated C<sub>4</sub> cereals, which were previously used modestly, such as millet (Riccomi *et al.* 2020, p. 2). Stable carbon ( $\delta^{13}\text{C}$ ) and nitrogen ( $\delta^{15}\text{N}$ ) levels of 11 individuals from San Genesio, including seven individuals from the present study (US 21083, US 13020, US 13022, US 2100 SK31, US 2103 SK32, US 26078 SK60, US 11012 SK20), indicate the use of C<sub>3</sub> foods (e.g., wheat, barley, rye) and the increasing integration of C<sub>4</sub> resources such as millet (Riccomi *et al.* 2020, pp. 12, 14). Starch granules embedded in the dental calculus of individuals from San Genesio confirm the consumption of both C<sub>3</sub> and C<sub>4</sub> cereals, the former including wheat and barley (tab. 2), and the latter exhibiting evidence of cooking or processing of millet. The pattern of dental attrition, characterised by increasing wear with age, in individuals from San Genesio, corresponds with diets from agricultural societies (Smith, 1984). The occurrence of higher scores of dental attrition in the maxillary dentition compared to mandibular dentition likely reflects both the use of teeth as tools, particularly involving the anterior maxillary dentition, as well as the high rate of AMTL of molar teeth.

With further consideration of diet, the incorporation of fish scales, likely from a species of bony fish, into dental calculus attests to their consumption at San Gen-

esio during the 6<sup>th</sup> and 7<sup>th</sup> centuries CE. The site is located close to the junction of the Arno and Elsa rivers, which served as a local freshwater source (Cantini *et al.* 2017, p. 252), and lead weights used for fishing nets have been documented at the site (Cantini 2010). Extramasticatory dental wear from San Genesio could indicate the production of fishing nets from plant fibres and/or animal sinew (Larsen 1985; Littleton *et al.* 2013). Although grooves are absent in individuals from San Genesio, one individual did present dental notching, and excessive occlusal wear and LSAMAT were found in most individuals in the present study.

LSAMAT dental wear has been primarily found in populations where archaeological and ethnographic evidence attest to the shredding, peeling, and processing of plant fibres for the production of nets, baskets, cordage, and textiles (Irish, Turner 1987, 1997; Littleton *et al.* 2013; Turner, Machado 1983). Typically, LSAMAT is associated with carbohydrate-rich plants such as manioc (Irish, Turner 1987) and tule roots (Turner, Machado 1983). Identifiable plant fibres found in the dental calculus of individuals from San Genesio include flax (*Linum* sp.) and hemp (*Cannabis* sp.), both of which are known to have been used for crafting in past societies (Díaz-Navarro *et al.* 2023) and have been found in dental calculus (MacKenzie *et al.* 2021). Excessive occlusal wear of the molars has also been linked with the processing of fibres and sinews by pulling them through clenched teeth, as well as by chewing (Molnar 2008, p. 429). This could also explain the high level of AMTL, specifically affecting the molar teeth in the current sample (Molnar 2011). Chewing of rough fibres, as well as rope twisting and weaving, could account for the unusual occlusal wear found on the molars of US 26159 SK297 (fig. 3), which exhibited a rough texture indicating the presence of abrasive agents and the continued introduction of gritty fibres into the mouth, and coincided with the presence of fibres embedded in dental calculus. Fibre processing is also a risk factor for the development of chronic maxillary sinusitis, and in the present study, fibres were found in the calculus of the three individuals with chronic maxillary sinusitis. In particular, the production of textiles such as rugs, clothing, and rope using hemp is an occupational risk factor for chronic maxillary sinusitis (Sundaresan *et al.* 2015).

An alternative explanation for the occurrence of LSAMAT in a high frequency of individuals at San Genesio could be the processing of animal skin for leather-making (Lous 1970; Monaco *et al.* 2022) or the preparation of animal sinews for crafting and utilitarian purposes (Pechenkina *et al.* 2002, p. 29). This theory is supported by the structure of the animal tissue found in the dental calculus, which is reminiscent of animal skin or membranes. In fact, preserved animal tissue was found in the dental calculus of at least one individual with LSAMAT (US 32730 SK230), though it could not be taxonomically identified, and could suggest both consumption and use of animal tissue for crafts. The high occurrence of antemortem chipping in the dentitions of the individuals from San Genesio could have been caused by chewing on abrasive foods such as nuts, bones, and fruit stones; however, as the frequency of chipping is so high, it probably oc-

curred during occupational activities such as fibre processing, leather making, or holding objects, among others (Bonfiglioli *et al.* 2004; Tanga *et al.* 2016).

The discovery of wood residues in the dental calculus of individuals from San Genesio, which are not consumed but can be inhaled during occupational or domestic activities, provides insights into both the activities practised, diet, and environmental conditions at the site. Inhaled or ingested wood dust can be incorporated into dental calculus (MacKenzie *et al.* 2021, p. 122; Radini *et al.* 2017, pp. 75–76). Individuals at San Genesio may have been exposed to wood dust through contact with the natural environment, as well as through activities such as carpentry, artefact manufacture, and building and construction (MacKenzie *et al.* 2021, p. 122). The teeth could have been used as a tool for stripping, processing, or as pliers (Scott 1997), and holding a wooden stick between the occlusal surfaces of the teeth could account for the sole individual (US 21083) who presented notching of the molars and premolars (Monaco *et al.* 2022, p. 7). In addition, it cannot be excluded that wood chewing sticks were used for oral hygiene; however, further investigation of dental microwear is necessary to explore this possibility (MacKenzie *et al.* 2021; Radini *et al.* 2017, p. 77). Wood dust is a known respiratory irritant, and occupational exposure has been found to increase the chances of developing chronic maxillary sinusitis by 45–75% (Clarhed *et al.* 2020, p. 600). One individual (US 13022) from San Genesio presented wood inclusions in dental calculus in combination with chronic maxillary sinusitis and the use of teeth as tools. The presence of *Quercus robur*, typically found in humid forests, is identified alongside potential traces of species such as willows and poplars, consistent with local hydromorphic conditions (SANTERAMO 2014, p. 65). In contrast, the presence of apple wood residues indicates the cultivation of fruit in the surrounding area.

Microfragments of charcoal incorporated into the dental calculus of five individuals from San Genesio attest to their exposure to smoke and fire, likely for everyday domestic, occupational, and cultural activities, and possibly natural brush fires. Charcoal could have been incorporated into dental calculus through ingestion, such as through accidental integration into food or through cooking practices (e.g., charred food), as well as the smoking of food for preservation (Buckley *et al.* 2021; Cristiani *et al.* 2018, p. 5; Radini *et al.* 2017, p. 11). Regarding San Genesio, one individual (US 32441 SK143) had chronic maxillary sinusitis and charcoal in their dental calculus, and notably, no evidence of extramasticatory dental wear. Theoretically, the temperature drop caused by the LALIA could have influenced people to spend more time indoors to keep warm and thus increased potential exposure to smoke from hearths and indoor fires, particularly due to poor ventilation indoors, which has been linked to chronic maxillary sinusitis (Clarhed *et al.* 2018, 2020; Panhuysen *et al.* 1997; Roberts 2007); however, regular exposure to fires both inside and outside can also account for the presence of charcoal in dental calculus.

Fungi, including spores, were embedded in the dental calculus of two individuals from San Genesio, of which one had extramasticatory dental wear (US 11012 SK20), and another chronic maxillary sinusitis (US 32441 SK143). The integration of fungi into archaeological dental calculus has been attributed to both the ingestion of mushrooms (Hardy *et al.* 2016; Radini *et al.* 2017) and the unintentional ingestion or inhalation of spores from the environment (Hardy *et al.* 2016). For example, Afonso-Vargas and colleagues (2015) interpret the integration of fungal spores into the dental calculus of individuals from the 18<sup>th</sup>-century Canary Islands as the result of the consumption of contaminated maize. In the case of San Genesio, although the type of fungi could not be taxonomically identified, the incorporation of fungi into dental calculus could reflect the consumption of edible mushrooms, but more likely of spoiled food at the site such as grains – for example, one individual (US 32441 SK143) had both fungi and type I starch granules integrated into dental calculus (tab. 2). An additional avenue of integration of fungi into calculus could also be exposure to spores during everyday life. In this period, the LALIA caused increased precipitation and humidity in Tuscany (Bini *et al.* 2020; Isola *et al.* 2019; Zanchetta *et al.* 2021), which would have created the ideal environment for the growth of fungal spores. In addition, food storage practices, poor hygiene, and damp surfaces could have promoted the accumulation of fungal spores and mould (MacKenzie *et al.* 2021, p. 121). It has been postulated that the cooccurrence of fungal spores in dental calculus with chronic maxillary sinusitis could infer an aetiological influence (MacKenzie *et al.* 2021); however, clinical cases of fungal chronic sinusitis have predominantly been linked to *Aspergillus* spp. (Raz *et al.* 2015), which has seldom been identified in archaeological dental calculus. Therefore, any association between the presence of fungal spores in dental calculus and chronic maxillary sinusitis at San Genesio is speculative.

The inclusion of bacterial remains consistent with that of the oral microbiota in the dental calculus of one individual (US 32730 SK230) has the potential to provide valuable insights into past microbial communities and confirm the role of dental calculus as a long-term biological archive (Adler *et al.* 2013; Saini *et al.* 2011; Warinner *et al.* 2015). Future research on oral microbiota should use biomolecular techniques such as aDNA and proteomics to investigate the potential occurrence of oral pathogens in dental calculus derived from individuals from San Genesio.

#### 4.1. Limitations

In some individuals, either the maxillary or mandibular dentition was not present or could not be assessed, which limited evaluation of the LSAMAT dental wear pattern. The sample size of the present study was too small to evaluate sex or age at death variations. Poor preservation of the maxillary sinuses limited the number of individuals that could be assessed for chronic maxillary sinusitis.

## 5. Conclusion

This study highlights the value of integrating dental calculus, extramasticatory wear, and chronic maxillary sinusitis evidence to reconstruct daily life and health in early medieval Tuscany. At San Genesio, cereals such as wheat, barley, and millet formed dietary staples, and were supplemented by freshwater fish. Plant fibres, wood, and charcoal embedded in dental calculus, together with LSAMAT and excessive occlusal wear, indicate fibre- and wood-working practices that employed the teeth as a 'third hand'. These activities were not only utilitarian but also occupational hazards, exposing individuals to inhaled particulates and increasing risks of respiratory conditions. Chronic maxillary sinusitis in three individuals likely reflects an interaction of dietary, environmental, and occupational stressors, including fibre and wood dust, indoor smoke, and potentially, fungal spores, exacerbated by the damp climate of the LALIA. Although small sample size and poor preservation limit broad generalisations, the findings highlight the oral cavity as a key nexus where subsistence, craft, and environment intersect. This integrative approach shows how diet, work, and climate jointly shaped health in communities adapting to political and ecological upheavals. Future biomolecular research will refine our understanding of diet, craft practices, and oral microbiomes, deepening insights into biocultural adaptation in 6<sup>th</sup> and 7<sup>th</sup> centuries CE Italy. Incorporating this combined framework into future research will enable for more robust and nuanced reconstructions of past human diet, behaviour, and health.

## Acknowledgements

The authors thank the Soprintendenza Archeologia, Belle Arti e Paesaggio for the provinces of Pisa and Livorno for granting permission to analyse the archaeological human skeletal remains from San Genesio and for facilitating this research.

This study was funded by the project 'Bioarchaeology of climatic change: an investigation on the Late Antique Little Ice Age' (BIOLALIA). 559901\_PRIN2022\_GIUFFRA\_2022BTT2Y2 CUP: I53D23000060006 Missione 4 "Istruzione e Ricerca" del PNRR, componente C2 – investimento 1.1, Fondo per il Programma Nazionale di Ricerca e Progetti di Rilevante Interesse Nazionale (PRIN).

This work was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 639286, project HIDDEN FOODS).

Author contributions:

- Bianca Casa: Conceptualisation, Data Curation, Formal Analysis, Investigation, Methodology, Validation, Visualisation, Writing – Original Draft Preparation, Writing – Review & Editing.
- Ilenia Gentile: Conceptualisation, Data Curation, Formal Analysis, Investigation, Methodology, Validation, Visualisation, Writing – Original Draft Preparation, Writing – Review & Editing.
- Giulia Riccomi: Conceptualisation, Methodology, Validation, Writing – Review & Editing.
- Federico Cantini: Resources, Writing – Review & Editing.
- Emanuela Cristiani: Conceptualisation, Funding Acquisition, Methodology, Project Administration, Resources, Supervision, Validation, Writing – Review & Editing.
- Valentina Giuffra: Conceptualisation, Funding Acquisition, Methodology, Project Administration, Resources, Supervision, Writing – Review & Editing.

**Abstract**

This study examines dental calculus, extramasticatory wear, and chronic maxillary sinusitis in 13 individuals from San Genesio, central Italy, dating to the second half of the 6<sup>th</sup> and 7<sup>th</sup> centuries CE. Microdebris in calculus revealed wheat, barley, millet, fish, fibres, wood, charcoal, and fungi. The patterns of LSAMAT and chipping suggest fibre and wood processing using teeth as a third hand. In three individuals, chronic maxillary sinusitis coincided with fibre and wood inclusions, highlighting occupational and environmental risks. The results highlight the biocultural interplay of subsistence, work, and the environment during the Late Antique Little Ice Age in post-Classical Tuscany.

**Keywords:** non-alimentary dental wear, micro-debris, occupational activities, environment, LALIA.

*Questo studio esamina il tartaro dentale, l'usura extramasticatoria e la sinusite mascellare cronica in 13 individui provenienti da San Genesio, nell'Italia centrale, risalenti alla seconda metà del VI e VII secolo d.C. I microdetriti presenti nel tartaro hanno rivelato la presenza di grano, orzo, miglio, pesce, fibre, legno, carbone e funghi. I modelli di LSAMAT e scheggiatura suggeriscono la lavorazione di fibre e legno utilizzando i denti come terza mano. In tre individui, la sinusite mascellare cronica coincideva con inclusioni di fibre e legno, evidenziando rischi occupazionali e ambientali. I risultati mettono in luce l'interazione bioculturale tra sussistenza, lavoro e ambiente durante la Piccola Era Glaciale tardoantica nella Toscana post-classica.*

**Parole chiave:** usura dentale non alimentare, micro-detriti, attività occupazionali, ambiente, LALIA.

## References

G.Y. ACSÁDI, J. NEMESKÉRI 1970, *History of Human Life Span and Mortality*, Budapest.

C.J. ADLER, K. DOBNEY, L.S. WEYRICH, J. KAIDONIS, A.W. WALKER, W. HAAK, C.J.A. BRADSHAW, G. TOWNSEND, A. SOŁTYSIAK, K.W. ALT, J. PARKHILL, A. COOPER 2013, *Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the Neolithic and Industrial revolutions*, "Nature Genetics", 45(4), pp. 450-455. DOI: 10.1038/ng.2536.

J. AFONSO-VARGAS, I. LA SERNA-RAMOS, M. ARNAY-DE-LA-ROSA 2015, *Fungal spores located in 18<sup>th</sup> century human dental calculi in the church "La Concepción" (Tenerife, Canary Islands)*, "Journal of Archaeological Science: Reports", 2, pp. 106-113. DOI: 10.1016/j.jasrep.2015.01.003.

S.J. ALQAHTANI 2010, *Atlas of Tooth Development and Eruption*, London.

K.W. ALT, S.L. PICHLER 1998, *Artificial Modifications of Human Teeth*, in K.W. ALT, F.W. RÖSING, M. TESCHLER-NICOLA (eds), *Dental Anthropology*, Vienna, pp. 387-415.

I.B. ARNADOTTIR, W.P. HOLBROOK, H. EGGERTSSON, H. GUDMUNDSDOTTIR, S.H. JONSSON, J.O. GUDLAUGSSON, S.R. SÆMUNDSSON, S.T. ELIASSON, H. AGUSTSDOTTIR 2010, *Prevalence of dental erosion in children: a national survey*, "Community Dentistry and Oral Epidemiology", 38(6), pp. 521-526. DOI: 10.1111/j.1600-0528.2010.00559.x.

M. BINI, G. ZANCHETTA, E. REGATTIERI, I. ISOLA, R. N. DRYSDALE, F. FABIANI, S. GENOVESI, J.C. HELLSTROM 2020, *Hydrological changes during the Roman Climatic Optimum in northern Tuscany (Central Italy) as evidenced by speleothem records and archaeological data*, "Journal of Quaternary Science", 35(6), pp. 791-802. DOI: 10.1002/jqs.3224.

B. BONFIGLIOLI, V. MARIOTTI, F. FACCHINI, M.G. BELCASTRO, S. CONDEMI 2004, *Masticatory and non-masticatory dental modifications in the Epipalaeolithic necropolis of Taforalt (Morocco)*, "International Journal of Osteoarchaeology", 14(6), pp. 448-456. DOI: 10.1002/oa.726.

P. BOOCOCK, C.A. ROBERTS, K. MANCHESTER 1995, *Maxillary sinusitis in Medieval Chichester, England*, "American Journal of Physical Anthropology", 98(4), pp. 483-495. DOI: 10.1002/ajpa.1330980408.

S. BROOKS, J.M. SUCHEY 1990, *Skeletal age determination based on the os pubis*, "Human Evolution", 5(3), pp. 227-238.

D.R. BROTHWELL 1981, *Digging Up Bones: The Excavation, Treatment, and Study of Human Skeletal Remains*, Ithaca.

A.S. BROWN, T. MOLNAR 1990, *Interproximal Grooving and Task Activity in Australia*, "American Journal of Physical Anthropology", 81(4), pp. 545-553. DOI: 10.1002/ajpa.1330810410.

J.L. BUCKBERRY, A.T. CHAMBERLAIN 2002, *Age estimation from the auricular surface of the ilium: A revised method*, "American Journal of Physical Anthropology", 119(3), pp. 231-239. DOI: 10.1002/ajpa.10130.

S. BUCKLEY, R.C. POWER, M. ANDREADAKI-VLAZAKI, M. AKAR, J. BECHER, M. BELSER, S. CAFISSO, S. EISENMANN, J. FLETCHER, M. FRANCKEN, B. HALLAGER, K. HARVATI, T. INGMAN, E. KATAKI, J. MARAN, M.A.S. MARTIN, P.J.P. McGEORGE, I. MILEVSKI, A. PAPADIMITRIOU, E. PROTOPAPADAKI, D.C. SALAZAR-GARCÍA, T. SCHMIDT-SCHULTZ, V.J. SCHUENEMANN, R. SHAFIQ, I. STUIJTS, D. YEGOROV, K.A. YENER, M. SCHULTZ, C. SPITERI, P.W. STOCKHAMMER 2021, *Archaeometric evidence for the earliest exploitation of lignite from the Bronze Age Eastern Mediterranean*, "Scientific Reports", 11(1), 24185. DOI: 10.1038/s41598-021-03544-w.

U. BÜNTGEN, A. CRIVELLARO, D. ARSENEAULT, M. BAILIE, D. BARCLAY, M. BERNABEI, J. BONTADI, G. BOSWIJK, D. BROWN, D.A. CHRISTIE, O.V. CHURAKOVA, E.R. COOK, R. D'ARRIGO, N. DAVI, J. ESPER, P. FONTI, C. GREAVES, R.M. HANTEMIROV, M.K. HUGHES, A.V. KIRDYANOV, P.J. KRUSIC, C. LE QUESNE, F.C. LJUNGQVIST, M. MCCORMICK, V.S. MYGLAN, K. NICOLUSSI, C. OPPENHEIMER, J. PALMER, C. QIN, F. REINIG, M. SALZER, M. STOFFEL, M. TORBENSON, M. TRNKA, R. VIL-LALBA, N. WIESENBERG, G. WILES, B. YANG, A. PIERMATTEI 2022, *Global wood anatom-*

ical perspective on the onset of the Late Antique Little Ice Age (LALIA) in the mid-6<sup>th</sup> century CE, "Science Bulletin", 67(22), pp. 2336-2344. DOI: 10.1016/j.scib.2022.10.019.

U. BÜNTGEN, A. CRIVELLARO, D. ARSENEAULT, M. BAILLIE, D. BARCLAY, M. BERNABEI, J. BONTADI, G. BOSWIJK, D. BROWN, D.A. CHRISTIE, O.V. CHURAKOVA, E.R. COOK, R. D'ARRIGO, N. DAVI, J. ESPER, P. FONTI, C. GREAVES, R.M. HANTEMIROV, M.K. HUGHES, A.V. KIRDYANOV, P.J. KRUSIC, C. LE QUESNE, F.C. LJUNGQVIST, M. MCCORMICK, V.S. MYGLAN, K. NICOLUSSI, C. OPPENHEIMER, J. PALMER, C. QIN, F. REINIG, M. SALZER, M. STOFFEL, M. TORBENSON, M. TRNKA, R. VIL-LALBA, N. WIESENBERG, G. WILES, B. YANG, A. PIERMATTEI 2016a, *Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD*, "Nature Geoscience", 9(3), pp. 231-236. DOI: 10.1038/ngeo2652.

U. BÜNTGEN, V.S. MYGLAN, F.C. LJUNGQVIST, M. MCCORMICK, N. DI COSMO, M. SIGL, J. JUNGCLAUS, S. WAGNER, P.J. KRUSIC, J. ESPER, J.O. KAPLAN, M.A.C. DE VAAN, J. LUTERBACHER, L. WACKER, W. TEGEL, A.V. KIRDYANOV 2016b, *Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD*, "Nature Geoscience", 9(3), pp. 231-236. DOI: 10.1038/ngeo2652.

S.E. BURNETT, V. TIESLER, K. TREMBLAY, J.C. WILLMAN 2023, *Intentional Dental Modification*, in F. MANNI, F. d'ERRICO (eds), *The Oxford Handbook of the Archaeology and Anthropology of Body Modification*, Oxford.

F. CANTINI 2010, *Vicus Wallari-borgo San Genesio. Il contributo dell'archeologia alla ricostruzione della storia di un central place della valle dell'Arno*, in F. CANTINI, F. SALVESTRINI (eds), *Vico Wallari-San Genesio. Ricerca storica e indagini archeologiche su una comunità del Medio Valdarno*, Florence, pp. 81-123.

F. CANTINI, S. VIVA, F. MARANI 2017, *La necropoli di seconda metà VI secolo di San Genesio (San Miniato-Pisa): elementi endogeni ed esogeni*, in C. EBANISTA, M. ROTTILII (eds), *Dalle steppe al mediterraneo popoli, culture, integrazione*, Atti del Convegno Internazionale di Studi (Cimitile-Santa Maria Capua Vetere, 18-19 giugno 2015), Napoli, pp. 251-268.

B. CASA, V. GIUFFRA, G. RICCOMI 2025, *Environment, Occupation, and Chronic Maxillary Sinusitis in Pre-Roman Italy*, "American Journal of Biological Anthropology", 187(1). DOI: 10.1002/ajpa.70059.

P. CHARLIER, I. HUYNH-CHARLIER, O. MUÑOZ, M. BILLARD, L. BRUN, G.L. DE LA GRANDMAISON 2010, *The microscopic (optical and SEM) examination of dental calculus deposits (DCD). Potential interest in forensic anthropology of a bio-archaeological method*, "Legal Medicine", 12(4), pp. 163-171. DOI: 10.1016/j.legalmed.2010.03.003.

S.H. CHO, H.J. MIN, H.X. HAN, S.S. PAIK, K.R. KIM 2006, *CT analysis and histopathology of bone remodeling in patients with chronic rhinosinusitis*, "Otolaryngology - Head and Neck Surgery", 135(3), pp. 404-408. DOI: 10.1016/j.otohns.2006.04.005.

U.K.E. CLARHED, H. JOHANSSON, M. VEEL SVENDSEN, K. TORÉN, A.K. MØLLER FELL, J. HELLGREN 2020, *Occupational exposure and the risk of new-onset chronic rhinosinusitis - a prospective study 2013-2018*, "Rhinology Journal", 58(6), pp. 597-604. DOI: 10.4193/Rhin20.104.

U.K.E. CLARHED, M. SVENDSEN, L. SCHIØLER, J. KONGERUD, K. TORÉN, J. HELLGREN, A.K. FELL 2018, *Chronic Rhinosinusitis Related to Occupational Exposure*, "Journal of Occupational & Environmental Medicine", 60(7), pp. 656-660. DOI: 10.1097/JOM.0000000000001312.

E. CRISTIANI, A. RADINI, D. BORIĆ, H.K. ROBSON, I. CARICOLA, M. CARRA, G. MUTRI, G. OXILIA, A. ZUPANCICH, M. ŠLAUS, D. VUJEVIĆ 2018, *Dental calculus and isotopes provide direct evidence of fish and plant consumption in Mesolithic Mediterranean*, "Scientific Reports", 8(1), 8147. DOI: 10.1038/s41598-018-26045-9.

K. R. DAELLENBACH, G. UZU, J. JIANG, L. CAS-SAGNES, Z. LENI, A. VLACHOU, G. STEFENELLI, F. CANONACO, S. WEBER, A. SEGERS, J.J. P. KUENEN, M. SCHAAP, O. FAVEZ, A. ALBINET, S. AKSOYOGLU, J. DOMMEN, U. BALTENSPERGER, M. GEISER, I. EL HADDAD, J. JAFFREZO, A.S.H. PRÉVÔT 2020, *Sources of*

particulate-matter air pollution and its oxidative potential in Europe, "Nature", 587(7834), pp. 414-419. DOI: 10.1038/s41586-020-2902-8.

A.M. DAVIES-BARRETT, L.S. OWENS, P.A. EEKHOUT 2021, *Paleopathology of the Ychsma: Evidence of respiratory disease during the Late Intermediate Period (AD 1000-1476) at the Central Coastal site of Pachacamac, Peru*, "International Journal of Paleopathology", 34, pp. 63-75. DOI: 10.1016/j.ijpp.2021.06.001.

S. DÍAZ-NAVARRO, R. GARCÍA-GONZÁLEZ, N. CIROTTO, M. HABER URIARTE 2023, *New insight into prehistoric craft specialisation. Tooth-tool use in the Chalcolithic burial site of Camino del Molino, Murcia, SE Spain*, "Journal of Archaeological Science: Reports", 50, 104066. DOI: 10.1016/j.jasrep.2023.104066.

T. DORO GARETTO, E. FULCHERI, S. CROVELLA 1991, *Manuale di antropologia dentaria*, Alba.

F. DUDDE, F. BARBAREWICZ, A. ZU KNYPHAUSEN, K.O. HENKEL 2023, *Chronic Maxillary Sinusitis Caused by an Aspergilloma in the Context of Inadequately Treated Type II Diabetes Mellitus*, "In Vivo", 37(3), pp. 1379-1383. DOI: 10.21873/invivo.13220.

D. FEREMBACH, I. SCHWIDETZKY, M. STLOUKAL 1980, *Recommendation for age and sex diagnoses of skeletons*, "Journal of Human Evolution", 9, pp. 517-549.

D. FIDALGO, A.M. SILVA, E. PORFÍRIO 2020, *Non-masticatory dental wear patterns in individuals exhumed from the Middle Bronze Age rock-cut tombs of Torre Velha 3 (Serpa, Portugal)*, "International Journal of Osteoarchaeology", 30 (1), pp. 13-23. DOI: 10.1002/oa.2825.

E. FIORIN, E. CRISTIANI 2023, *A protocol for the extraction of microremains from archaeological human dental calculus v1*. DOI: 10.17504/protocols.io.3byl4q6r8vo5/v1.

D.W. FRAYER, M.D. RUSSELL 1987, *Artificial Grooves on the Krapina Neanderthal Teeth*, "American Journal of Physical Anthropology", 74, pp. 393-405.

B.P. GEERA, J.E. NELSON, E. SOUZA, K.C. HUBER 2006, *Composition and Properties of A- and B-type Starch Granules of Wild-type, Partial Waxy, and Waxy Soft Wheat*, "Cereal Chemistry", 83(5), pp. 551-557. DOI: 10.1094/CC-83-0551.

G.J. GIBSON, R. LODDENKEMPER, B. LUNDBÄCK, Y. SIBILLE 2013, *Respiratory health and disease in Europe: the new European Lung White Book*, "European Respiratory Journal", 42(3), pp. 559-563. DOI: 10.1183/09031936.00105513.

B. GONZÁLEZ-RABANAL, A.B. MARÍN-ARROYO, E. CRISTIANI, A. ZUPANCICH, M.R. GONZÁLEZ-MORALES 2022, *The arrival of millets to the Atlantic coast of northern Iberia*, "Scientific Reports", 12(1), 18589. DOI: 10.1038/s41598-022-23227-4.

K. HARDY, A. RADINI, S. BUCKLEY, R. SARIG, L. COPELAND, A. GOPHER, R. BARKAI 2016, *Dental calculus reveals potential respiratory irritants and ingestion of essential plant-based nutrients at Lower Palaeolithic Qesem Cave Israel*, "Quaternary International", 398, pp. 129-135. DOI: 10.1016/j.quaint.2015.04.033.

K. HARPER 2023, *The First Plague Pandemic in Italy: The Written Evidence*, "Speculum", 98(2), pp. 369-420. DOI: 10.1086/723937.

A.G. HENRY, H.F. HUDSON, D.R. PIPERNO 2009, *Changes in starch grain morphologies from cooking*, "Journal of Archaeological Science", 36(3), pp. 915-922. DOI: 10.1016/j.jas.2008.11.008.

A.G. HENRY, D.R. PIPERNO 2008, *Using plant microfossils from dental calculus to recover human diet: a case study from Tell al-Raq'a, Syria*, "Journal of Archaeological Science", 35(7), pp. 1943-1950. DOI: 10.1016/j.jas.2007.12.005.

A.G. HENRY, D.R. PIPERNO, A.J. RANERE 2011, *Starch grain evidence for the preceramic dispersals of maize and root crops into tropical dry forests of Panama*, "Proceedings of the National Academy of Sciences", 108(9), pp. 3656-3661.

M.W. HERSHBERGER, P. HE, K. FRANCOIS, D. LERNER, A. BEAR, N. ADAPPA, N. PANCHAL 2024, *Is maxillary sinusitis and radiographic maxillary sinus opacification associated with an altered microbiology of MRONJ?*, "Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology", 137(4), pp. 345-354. DOI: 10.1016/j.oooo.2023.12.003.

R. HICKEL 1989, *Zahnabrasion und beruflich bedingte Einflüsse bei Steinbrucharbeitern*, St. Augustin.

S. HILLSON 1996, *Dental Anthropology*, Cambridge.

S. HILLSON 2005, *Teeth*, 2<sup>nd</sup> ed., Cambridge.

S. HILLSON 2014, *Tooth Development in Human Evolution and Bioarchaeology*, Cambridge.

W.L. HYLANDER 1973, *The adaptive significance of Eskimo craniofacial morphology*, in A.A. DAHLBERG, T.M. GRABER (eds), *Orofacial Growth and Development*, The Hague, without page number.

J.D. IRISH, C.G. TURNER 1987, *More Lingual Surface Attrition of the Maxillary Anterior Teeth in American Indians: Prehistoric Panamanians*, "American Journal of Physical Anthropology", 73, pp. 209-213.

J.D. IRISH, C.G. TURNER 1997, *Brief Communication: First Evidence of LSAMAT in Non-Native Americans: Historic Senegalese From West Africa*, "American Journal of Physical Anthropology", 102, pp. 141-146.

I. ISOLA, G. ZANCHETTA, R.N. DRYSDALE, E. REGATTIERI, M. BINI, P. BAJO, J.C. HELLSTROM, I. BANESCHI, P. LIONELLO, J. WOODHEAD, A. GREIG 2019, *The 4.2ka event in the central Mediterranean: new data from a Corkia speleothem (Apuan Alps, central Italy)*, "Climate of the Past", 15(1), pp. 135-151. DOI: 10.5194/cp-15-135-2019.

K.H. KIM, E. KABIR, S. KABIR 2015, *A review on the human health impact of airborne particulate matter*, "Environment International", 74, pp. 136-143. DOI: 10.1016/j.envint.2014.10.005.

A. R. KLAES 2018, *MorphoPASSE: the Morphological Pelvis and Skull Sex Estimation Database*. Version 1.0, Topeka.

A.R. KLAES, S.J. COLE 2018, *MorphoPASSE: the Morphological Pelvis and Skull Sex Estimation Database Manual*. Version 1.0. Topeka, KS.

M. KRENZ-NIEDBALA, S. ŁUKASIK 2017, *Skeletal Evidence for Otitis Media in Mediaeval and Post-Mediaeval Children from Poland, Central Europe*, "International Journal of Osteoarchaeology", 27(3), pp. 375-386. DOI: 10.1002/oa.2545.

P.S.J. LAKEY, T. BERKEMEIER, H. TONG, A.M. ARANGIO, K. LUCAS, U. PÖSCHL, M. SHIRAIWA 2016, *Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract*, "Scientific Reports", 6. DOI: 10.1038/srep32916.

C.S. LARSEN 1985, *Dental Modifications and Tool Use in the Western Great Basin*, "American Journal of Physical Anthropology", 67(4), pp. 393-402. DOI: 10.1002/ajpa.1330670411.

M.J. LEE, T.J. SIEK, C.S. HIRST 2024, *Chronic maxillary sinusitis in palaeopathology: A review of methods*, "International Journal of Paleopathology", 44(3), pp. 51-66. DOI: 10.1016/j.ijpp.2023.11.005.

A.R. LIEVERSE 1999, *Diet and the aetiology of dental calculus*, "International Journal of Osteoarchaeology", 9, pp. 219-232.

J. LIN, C. WANG, X. WANG, F. CHEN, W. ZHANG, H. SUN, F. YAN, Y. PAN, D. ZHU, Q. YANG, S. GE, Y. SUN, K. WANG, Y. ZHANG, M. XIAN, M. ZHENG, A. MO, X. XU, H. WANG, X. ZHOU, L. ZHANG 2024, *Expert consensus on odontogenic maxillary sinusitis multidisciplinary treatment*, "International Journal of Oral Science", 16(11). DOI: 10.1038/s41368-024-00278-z.

A. LINOSSIER, M. GAJARDO, J. OLAVARRIA 1996, *Palaeomicrobiological study in dental calculus: Streptococcus mutans*, "Scanning Microscopy", 10 (4).

J. LITTLETON, R. SCOTT, G. MCFARLANE, K. WALSHE 2013, *Hunter-gatherer variability: Dental wear in South Australia*, "American Journal of Physical Anthropology", 152(2), pp. 273-286. DOI: 10.1002/ajpa.22358.

I. Lous 1970, *The masticatory system used as a tool*, "Dental Abstracts", 74(1) pp. 457-458.

M. LOZANO, J.M. BERMÚDEZ DE CASTRO, J.L. ARSUAGA, E. CARBONELL 2017, *Diachronic analysis of cultural dental wear at the Atapuerca sites (Spain)*, "Quaternary International", 433(Part A), pp. 243-250. DOI: 10.1016/j.quaint.2015.08.028.

H. LUKESOVA, B. HOLST 2024, *Identifying plant fibres in cultural heritage with optical and electron microscopy: How to present re*

sults and avoid pitfalls, "Heritage Science", 12 (12).

L. MACKENZIE, C.F. SELLER, M. HOLST, K. KEEFE, A. RADINI 2021, *Dental calculus in the industrial age: Human dental calculus in the Post-Medieval period, a case study from industrial Manchester*, "Quaternary International", 653-654, pp. 114-126. DOI: 10.1016/j.quaint.2021.09.020.

M. McCORMICK, U. BÜNTGEN, M.A. CANE, E.R. COOK, K. HARPER, P. HUYBERS, T. LITT, S.W. MANNING, P.A. MAYEWSKI, A.F.M. MORE, K. NICOLUSSI, W. TEGET 2012, *Climate change during and after the Roman Empire: Reconstructing the past from scientific and historical evidence*, "Journal of Interdisciplinary History", 43(2), pp. 169-220. DOI: 10.1162/JINH\_a\_00379.

D.C. MERRETT, S.PFEIFFER 2000, *Maxillary sinusitis as an indicator of respiratory health in past populations*, "American Journal of Physical Anthropology", 111(3), pp. 301-318. DOI: 10.1002/(SICI)1096-8644(200003)111:3<301::AID-AJPA2>3.0.CO;2-0.

G.R. MILNER, C.S. LARSEN 1991, *Teeth As Artifacts of Human Behavior: Intentional Mutilation and Accidental Modification*, in M.A. KELLEY, C.S. LARSEN (eds), *Advances in Dental Anthropology*, New York, pp. 357-378.

P. MOLNAR 2008, *Dental wear and oral pathology: Possible evidence and consequences of habitual use of teeth in a Swedish Neolithic sample*, "American Journal of Physical Anthropology", 136(4), pp. 423-431. DOI: 10.1002/ajpa.20824.

P. MOLNAR 2010, *Extramasticatory dental wear reflecting habitual behavior and health in past populations*, "Clinical Oral Investigations", 15(5), pp. 681-689. DOI: 10.1007/s00784-010-0447-1.

P. MOLNAR 2011, *Extramasticatory dental wear reflecting habitual behavior and health in past populations*, "Clinical Oral Investigations", 15(5), pp. 681-689. DOI: 10.1007/s00784-010-0447-1.

M. MONACO, G. RICCOMI, S. MINOZZI, S. CAMPANA, V. GIUFFRA 2022, *Exploring activity-induced dental modifications in medieval Pieve di Pava (central Italy, 10th-12th centuries AD)*, "Archives of Oral Biology", 140, 105449. DOI: 10.1016/j.archoralbio.2022.105449.

A. NAVA, E. FIORIN, A. ZUPANCICH, M. CARRA, C. OTTONI, G. DI CARLO, I. VOZZA, O. BRUGNOLLETTI, F. ALHAIQUE, R. GRIFONI CREMONESI, A. COPPA, L. BONDIOLI, D. BORIĆ, E. CRISTIANI 2021, *Multipronged dental analyses reveal dietary differences in last foragers and first farmers at Grotta Continenza, central Italy (15,500–7000 BP)*, "Scientific Reports", 11(1), 4261. DOI: 10.1038/s41598-021-82401-2.

A. OGDEN 2008, *Advances in the palaeopathology of teeth and jaws*, in R. PINHASI, S. MAYS (eds), *Advances in Palaeopathology*, Chichester, pp. 283-307.

S.G. PALLARDY 2008, *Physiology of Woody Plants*, 3<sup>rd</sup> ed., London.

R.G.A.M. PANHUYSEN, V. COENEN, T.D. BRUINJES 1997, *Chronic Maxillary Sinusitis in Medieval Maastricht, the Netherlands*, "International Journal of Osteoarchaeology", 7(6), pp. 610-614. DOI: 10.1002/(SICI)1099-1212(199711/12)7:6<610::AID-OA366>3.0.CO;2-Q.

J. PARK, H.J. KIM, C.H. LEE, C.H. LEE, H.W. LEE 2021, *Impact of long-term exposure to ambient air pollution on the incidence of chronic obstructive pulmonary disease: A systematic review and meta-analysis*, "Environmental Research", 194. DOI: 10.1016/j.envres.2020.110703.

E. A. PECHENINKA, R. A. BENFER, W. ZHIJUN 2002, *Diet and health changes at the end of the Chinese Neolithic: The Yangshao/Longshan transition in Shaanxi province*, "American Journal of Physical Anthropology", 117(1), pp. 15-36. DOI: 10.1002/ajpa.10014.

W. POHL 1997, *The Empire and the Lombards: treaties and negotiations in the sixth century*, in W. POHL (ed), *Kingdoms of the Empire. The Integration of Barbarians in Late Antiquity*, Leiden, pp. 75-134.

A. RADINI, E. NIKITA 2023, *Beyond dirty teeth: Integrating dental calculus studies with osteoarchaeological parameters*, "Quaternary International", 653-654, pp. 3-18. DOI: 10.1016/j.quaint.2022.03.003.

A. RADINI, E. NIKITA, S. BUCKLEY, L. COPELAND, K. HARDY 2017, *Beyond food: The multiple pathways for inclusion of materials into ancient dental calculus*, "American Journal of Physical Anthropology", 162(S63), pp. 71-83. DOI: 10.1002/ajpa.23147.

A. RADINI, M. TROMP, A. BEACH, E. TONG, C. SELLER, M. MCCORMICK, J.V. DUDGEON, M.J. COLLINS, F. RÜHLI, R. KRÖGER, C. WARINNER 2019, *Medieval women's early involvement in manuscript production suggested by lapis lazuli identification in dental calculus*, "Science Advances", 5(1). DOI: 10.1126/sciadv.aau7126.

E. RAZ, W. WIN, M. HAGIWARA, Y.W. LUI, B. COHEN, G.M. FATTERPEKAR 2015, *Fungal Sinusitis*, "Neuroimaging Clinics of North America", 25(4), pp. 569-576. DOI: 10.1016/j.nic.2015.07.004.

G. RICCOMI, J. CASACCIA, S. MINOZZI, C. FELICI, S. CAMPANA, V. GIUFFRA 2021, *Maxillary sinusitis as a respiratory health indicator: a bioarchaeological investigation into medieval central Italy*, "International Journal of Paleopathology", 35, pp. 40-48. DOI: 10.1016/j.ijpp.2021.09.001.

G. RICCOMI, S. MINOZZI, J. ZECH, F. CANTINI, V. GIUFFRA, P. ROBERTS 2020, *Stable isotopic reconstruction of dietary changes across Late Antiquity and the Middle Ages in Tuscany*, "Journal of Archaeological Science: Reports", 33, 102546. DOI: 10.1016/j.jasrep.2020.102546.

C. A. ROBERTS 2007, *A bioarchaeological study of maxillary sinusitis*, "American Journal of Physical Anthropology", 133(2), pp. 792-807. DOI: 10.1002/ajpa.20601.

N. SABBATH, A. TEIMORI, M.A. HESNI 2021, *Digital light microscopy to characterize the scales of two goatfishes (Perciformes; Mullidae)*, "Microscopy Research and Technique", 84(2), pp. 180-191. DOI: 10.1002/jemt.23576.

S. SABIN, J. A. FELLOWS YATES 2020, *Dental Calculus Field-Sampling Protocol (Sabin version) v2*. DOI: 10.17504/protocols.io.bqecmtaw.

R. SAINI, S. SAINI, S. SHARMA 2011, *Biofilm: A dental microbial infection*, "Journal of Natural Science, "Biology and Medicine", 2(1), 71. DOI: 10.4103/0976-9668.82317.

R. SANTERAMO 2014, *Impatto antropico, paesaggio e gestione del suolo. Primi risultati archeobotanici a San Genesio*, Tesi di laurea magistrale, University of Pisa.

G.R. SCOTT 1997, *Dental Anthropology*, in R. DULBECCO (ed), *Encyclopedia of Human Biology*, 2<sup>nd</sup> ed., Cambridge, pp. 175-190.

M. SIGL, M. WINSTRUP, J.R. McCONNELL, K.C. WELTEN, G. PLUNKETT, F. LUDLOW, U. BÜNTGEN, M. CAFFEE, N. CHELLMAN, D. DAHL-JENSEN, H. FISCHER, S. KIPFSTUHL, C. KOSTICK, O.J. MASELLI, F. MEKHALDI, R. MULVANEY, R. MUSCHELER, D.R. PASTERIS, J.R. PILCHER, M. SALZER, S. SCHÜPBACH, J.P. STEFFENSEN, B.M. VINther, T.E. WOODRUFF 2015, *Timing and climate forcing of volcanic eruptions for the past 2,500 years*, "Nature", 523(7562), pp. 543-549. DOI: 10.1038/nature14565.

R.G. SLAVIN, S.L. SPECTOR, I.L. BERNSTEIN, M.A. KALINER, D.W. KENNEDY, F.S. VIRANT, E.R. WALD, D.A. KHAN, J. BLESSING-MOORE, D.M. LANG, R.A. NICKLAS, J.J. OPPENHEIMER, J.M. PORTNOY, D.E. SCHULLER, S.A. TILLES, L. BORISH, R.A. NATHAN, B.A. SMART, M.L. VANDEWALKER 2005, *The diagnosis and management of sinusitis: A practice parameter update*, "Journal of Allergy and Clinical Immunology", 116(6), pp. S13-S47. DOI: 10.1016/j.jaci.2005.09.048.

B.H. SMITH 1984, *Patterns of Molar Wear in Hunter-Gatherers and Agriculturalists*, "American Journal of Physical Anthropology", 63, pp. 39-56.

N.E. SMITH-GUZMÁN, J. RIVERA-SANDOVAL, C. KNIPPER, G.A. SÁNCHEZ ARIAS 2020, *Intentional dental modification in Panamá: New support for a late introduction of African origin*, "Journal of Anthropological Archaeology", 60, 101226. DOI: 10.1016/j.jaa.2020.101226.

A. SPERDUTI, M.R. GIULIANI, G. GUIDA, P.P. PETRONE, P.F. ROSSI, S. VACCARO, D.W. FRAYER, L. BONDIOLI 2018, *Tooth grooves, occlusal striations, dental calculus, and evidence for fiber processing in an Italian Eneolithic/Bronze Age cemetery*, "American Journal of Physical Anthropology", 167(2), pp. 234-243. DOI: 10.1002/ajpa.23619.

T.D. STEWART 1979, *Essentials of Forensic Anthropology - Especially as developed in the United States*, Springfield.

F.L. STODDARD 1999, *Survey of Starch Particle-Size Distribution in Wheat and Related Species*, "Cereal Chemistry", 76(1), pp. 145-149. DOI: 10.1094/CCHEM.1999.76.1.145.

A.S. SUNDARESAN, A.G. HIRSCH, M. STORM, B.K. TAN, T.L. KENNEDY, J.S. GREENE, R.C. KERN, B.S. SCHWARTZ 2015, *Occupational and environmental risk factors for chronic rhinosinusitis: a systematic review*, "International Forum of Allergy & Rhinology", 5(11), pp. 996-1003. DOI: 10.1002/alr.21573.

C. TANGA, V. QUINTILI, R. TINARELLI, R. D'ANASTASIO, J. VICIANO 2016, *Non-masticatory dental lesions in the Samnite necropolis of Alfedena (3rd-5th centuries BCE; central-southern Italy)*, "Journal of Paleopathology", 26, pp. 15-26.

R. TORRENCE, H. BARTON 2006, *Ancient Starch Research*, Walnut Creek.

C.G. TURNER, L.M.C. MACHADO 1983, *A New Dental Wear Pattern and Evidence for High Carbohydrate Consumption in a Brazilian Archaic Skeletal Population*, "American Journal of Physical Anthropology", 61, pp. 125-130.

I.M. VELSKO, K.A. OVERMYER, C. SPELLER, L. KLAUS, M.J. COLLINS, L. LOE, L.A.F. FRANTZ, K. SANKARANARAYANAN, C.M. LEWIS JR, J. BAUTISTA RODRIGUEZ MARTINEZ, E. CHAVES, J.J. COON, G. LARSON, C. WARINNER 2017, *The dental calculus metabolome in modern and historic samples*, "Metabolomics", 13(11), 134. DOI: 10.1007/s11306-017-1270-3.

S. VIVA, C. LUBRITTO, F. CANTINI, P.F. FABBRI 2022, *Evidence of Barbarian migrations and interpersonal violence during the Gothic War in sixth-century Tuscany: the case of the Goth horseman from San Genesio (Pisa)*, "Archaeological and Anthropological Sciences", 14(3), 39. DOI: 10.1007/s12520-022-01515-4.

C. WARINNER, C. SPELLER, M.J. COLLINS 2015, *A new era in palaeomicrobiology: prospects for ancient dental calculus as a long-term record of the human oral microbiome*, "Philosophical Transactions of the Royal Society B: Biological Sciences", 370(1660), 20130376. DOI: 10.1098/rstb.2013.0376.

J.T. WATSON, R. HAAS 2017, *Dental evidence for wild tuber processing among Titicaca Basin foragers 7000 ybp*, "American Journal of Physical Anthropology", 164(1), pp. 117-130. DOI: 10.1002/ajpa.23261.

E.A. WHEELER, P. BAAS, P.E. GASSON 2007, *IAWA list of microscopic features for hardwood identification with an appendix on non-anatomical information*, "IAWA Bulletin", 10(3), pp. 219-332.

J.C. WILLMAN 2016, *Dental wear at Dolní Věstonice II: Habitual behaviors and social identities written on teeth*, in J. SVOBODA (ed), *Dolní Věstonice II: Chronostratigraphy, Paleoethnology, Paleoanthropology*, Brno, pp. 353-371.

X. YANG, L. PERRY 2013, *Identification of ancient starch grains from the tribe Triticeae in the North China Plain*, "Journal of Archaeological Science", 40(8), pp. 3170-3177. DOI: 10.1016/j.jas.2013.04.004.

G. ZANCHETTA, M. BINI, K. BLOOMFIELD, A. IZDEBSKI, N. VIVOLI, E. REGATTIERI, I. ISOLA, R.N. DRYSDALE, P. BAJO, J.C. HELLSTROM, R. WIŚNIEWSKI, A.E. FALICK, S. NATALI, M. LUPPICHINI 2021, *Beyond one-way determinism: San Frediano's miracle and climate change in Central and Northern Italy in Late Antiquity*, "Climatic Change", 165 (1-2), 25. DOI: 10.1007/s10584-021-03043-x.

K.A. ZONNEVELD, K. HARPER, A. KLÜGEL, L. CHEN, G. DE LANGE, G.J.M. VERSTEEGH 2024, *Climate change, society, and pandemic disease in Roman Italy between 200 BCE and 600 CE*, "Scientific Advances", 10.

L. ZYLBERBERG, J. BEREITER-HAHN, J.Y. SIRE 1988, *Cytoskeletal organization and collagen orientation in the fish scales*, "Cell and Tissue Research", 253(3). DOI: 10.1007/BF00219750.